
CTU - Departamento de Estruturas   3 TRU 024 Concreto Estrutural   Prof. Roberto Buchaim 1

Estado Limite Último - Torção Simples e Torção Combinada 
 
 
1. Introdução 
 
Uma estrutura sob ação das cargas nela aplicadas pode ser solicitada a dois 
tipos de torção: 
 

(a) torção de equilíbrio, e 
(b) torção de compatibilidade 

 
Na torção de equilíbrio, a consideração dos momentos torçores na análise da 
estrutura é obrigatória, independentemente de qual seja a sua rigidez. É o caso 
do concreto estrutural, que pode ou não fissurar. Isto porque sem a torção, as 
condições de equilíbrio não se verificam. A viga curva e isostática mostrada na 
Figura 1 (a) exemplifica a obrigatoriedade da consideração da torção. 
 
 
 

 
 
 

Figura 1: Torção de equilíbrio e torção de compatibilidade. 
 
 
No segundo caso, a torção de compatibilidade depende da rigidez da estrutura 
e decorre de condições geométricas nos nós comuns a duas (ou mais) barras. 
Por exemplo, cf. a Figura 1 (b), são iguais as rotações segundo x  das barras 
AB e BC no nó B, ou seja, BC

Bx
AB

Bx ,, θθ = . Na primeira barra, a rotação é axial e 
ativa sua rigidez à torção, do que decorre o momento torçor. Na segunda barra, 
esta mesma rotação ativa sua rigidez à flexão. Com isto, em B, onde as barras 
fazem º90  entre si, o momento torçor em uma barra é o momento fletor na 
outra. É fácil ver que se em B houvesse uma rótula, a compatibilidade de 
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rotações deixaria de existir, i.e., 0, =AB
Bxθ  e 0, ≠BC

Bxθ , anulando a transmissão de 
momentos de uma barra para outra. Ainda assim seria possível o equilíbrio da 
estrutura.  
 
Nas estruturas de concreto, a torção de compatibilidade pode ser 
desconsiderada na análise. Isto não quer dizer que a torção tenha 
desaparecido. Na realidade, as estruturas de concreto, na passagem do 
Estádio I (sem fissuras) para o Estádio II (com fissuras), sofrem a queda na 
rigidez à torção tGJ  bem maior do que a queda na rigidez à flexão EI . Como 
os momentos transmitidos por compatibilidade de rotação dependem da rigidez 
relativa EIGJk t= , eles têm, nessa passagem, seu valor bastante reduzido 
pela perda de rigidez por fissuração. Assim, justifica-se a desconsideração da 
torção de compatibilidade na análise estrutural. Entretanto, é preciso 
providenciar armaduras transversais e longitudinais adequadamente 
dimensionadas e ancoradas, para controlar as aberturas de fissuras em 
serviço, e possibilitar a redistribuição de esforços solicitantes na mudança de 
rigidez da estrutura. 
 
Mostra-se, a seguir, um exemplo de redistribuição dos esforços na passagem 
do Estádio I para o II, na viga-balcão da Figura 1 (b). Supõe-se seção 
retangular hhhb /5,0/ = , e vãos laCDAB 5,0===  e lBC = . Adota-se o 
coeficiente de Poisson igual 2,0=ν , donde 4,2cc EG = . Além disso, admite-se 
a carga q  uniformemente distribuída em todo o vão BC, e as seguintes 
relações entre as rigidezes antes e após a fissuração: ItcIIt JGGJ )(15,0)( = , 

IcII IEEI )(5,0)( = . Estes valores estão indicados na NBR 6118: 2003, itens 
15.7.3 e 17.5.2.2. O momento transmitido de uma barra a outra, no nó B, vale: 
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No Estádio I, a constante k  vale 
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Para a seção retangular do exemplo, com 43 0286,0229,0 hhbJt ==  e 
43 0417,00833,0 hbhI == , obtém-se 2863,0)

0417,0
0286,0(

4,2
1

==Ik . Com isto, os 

momentos nos Estádios I e II valem respectivamente: 
 

8
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Como se vê, na passagem do Estádio I para o II haverá uma redistribuição de 

%3,76100)
2225,0
0527,01( =×−  do momento IBM , . Além disso, este resultado mostra 

que o momento (negativo) em B, na viga BC, é apenas %3,5  do máximo 
momento (positivo) que seria obtido no centro vão se os nós B e C fossem 
rotulados, anulando a transmissão de momentos. Por conseqüência, uma 
estrutura como a do exemplo pode ser analisada e dimensionada como se a 
barra BC fosse biarticulada, mas deve-se no dimensionamento providenciar 
armadura superior (negativa) de flexão nessa barra, e armaduras transversal e 
longitudinal (ainda que mínimas) na barras AB e CD.    
 
Havendo torção na peça estrutural considerada, a resistência das seções 
contra a torção se dá de duas formas distintas, a saber: 
 

(a) torção circulatória (ou torção de Saint Venant): o momento torçor é 
equilibrado por tensões tangenciais que dão a volta na seção. É o caso 
das seções maciças ou vazadas (fechadas). As tensões tangenciais τ  
originadas pela torção são concentradas, na solução plástica, na 
periferia da seção de modo a maximizar o braço de alavanca das forças 
resultantes das tensões tangenciais em cada lado da seção.  

 
 

 
 
 

Figura 2: Torção circulatória, seção cheia ou vazada. 
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(b) flexo-torção (ou torção de empenamento): é a que ocorre nos perfis de 
paredes delgadas. Neste caso, cf. a Figura 3 (a), o binário das tensões 
tangenciais circulatórias τ  têm um braço de alavanca muito pequeno 
(por causa da espessura δ , também muito pequena em comparação 
com as demais dimensões gerais hb /  da seção). Com isto, a resistência 
da seção (com pelo menos três chapas, não todas concorrentes) passa 
a se dar através de momento fletor e força cortante, com conseqüente 
empenamento da seção transversal, como mostra a Figura 3 (c).  

 
No item seguinte só será estudada a torção circulatória, mais comum em peças 
de concreto estrutural.  
 
  
 
 

 
 

Figura 3: Flexo-torção ou torção de empenamento. 
 
 
2. Torção circulatória. Estado Limite Último. 
 
2.1 Condições gerais. 
 
O dimensionamento à torção no ELU baseia-se na Teoria da Plasticidade, e faz 
uso de duas condições da Mecânica, a saber, as condições de equilíbrio e 
limitação (no projeto) das resistências dos materiais, concreto e aço. As 
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condições de compatibilidade são descartadas. O dimensionamento à torção é 
feito de forma praticamente idêntica ao dimensionamento à força cortante. Em 
ambos os casos de tensões tangenciais, dimensiona-se uma chapa de 
espessura neste texto admitida constante, armada em duas direções e 
geralmente fissurada, sob a ação de um estado plano de tensões.  
 
Examina-se de início a torção simples, i.e., sem combiná-la com qualquer outro 
esforço solicitante. Usa-se o seguinte princípio da plasticidade: se uma seção 
(ou uma peça estrutural) tem mais material do que o considerado no projeto, 
sua capacidade portante não pode ser menor do que a calculada teoricamente. 
Assim, admite-se para a torção circulatória as hipóteses de trabalho referidas a 
seguir. 
 

(a) A seção maciça é transformada em um tubo (ou casca) resistente na 
sua periferia, cuja espessura é escolhida de modo a atender as duas 
mencionadas condições da Mecânica (equilíbrio sob ação das cargas de 
cálculo e limitação das resistências dos materiais a valores de cálculo). 
Com isto, atende-se a inequação que relaciona o momento torçor 
solicitante ao momento torçor resistente: 

 
RdSd TT ≤  (3)

 
Nesta desigualdade, os subscritos S  e R  significam respectivamente 
solicitante e resistente. 
 

(b) O modelo resistente é o de campos descontínuos de tensão, como para 
força cortante e momento fletor, atuantes em chapas formadas pelas 
paredes do tubo resistente à torção. Este modelo pode ser simplificado, 
substituindo-se os campos de tensão pelas suas resultantes, com o que 
se obtém uma treliça espacial. Em qualquer caso, as compressões 
diagonais são atribuídas ao concreto e as trações às armaduras 
longitudinal e transversal. O que talvez mascare a semelhança com a 
resistência à força cortante de alma de vigas está no fato de alocar-se, 
nas vigas, a força longitudinal resistente (parcela θcotdV ) da chapa aos 

banzos (cada qual recebendo θcot5,0 dV ). Isto se faz com vantagens, 
pois no banzo comprimido pelo momento fletor há uma descompressão 
pela ação da força cortante, dispensando armadura se a 
descompressão não transformar o banzo de comprimido em tracionado. 
Por outro lado, no banzo tracionado pelo momento fletor, há um 
aumento de tração pela ação da força cortante, o que possibilita melhor 
aproveitamento da armadura longitudinal. Não fossem estas duas 
vantagens, a armadura longitudinal da força cortante poderia e deveria 
ser distribuída na alma da viga. 

 
 
Considerando, então, para a torção o mesmo modelo resistente usado para a 
força cortante, trata-se de substituir o momento torçor solicitante por forças 
cortantes a ele estaticamente equivalentes e atuantes nas paredes do tubo.  
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A inclinação θ  do campo de compressão é considerada a mesma em cada 
parede, e pode ser escolhida livremente entre º45  e º6,26 , correspondendo a 

θcot  respectivamente igual a 1 e 2 . A NBR 6118: 2003 recomenda a faixa º45  
a º30 . ( θcot  pode chegar a 3  em peças protendidas ou em peças flexo-
comprimidas, se projetadas e dimensionadas para não fissurar em serviço). 
 

(c) A espessura equivalente do tubo que forma a seção resistente, eh , pode 
ser estimada igual a: 

 

12c
u
Ahe ≥=  (4)

 
Nesta expressão, A  é a área da seção e u  é o seu perímetro, 1c  é a distância 
entre a face lateral do elemento e o eixo da barra longitudinal de canto. Ver a 

Figura 4. A espessura obtida pela expressão 
u
Ahe =  pode ser aumentada se a 

condição de segurança contra o esmagamento do concreto for crítica, ou 
diminuída em caso contrário (cf. Regan, 1999). Em qualquer caso, deve-se ter 

12che ≥ .  
 
Se a seção for vazada, a determinação da espessura do tubo é calculada do 
mesmo modo, como se a seção fosse maciça, mas eh  não pode superar a 
espessura real da parede efeh , . Ver a Figura 5.  

 
 

 
 
 

Figura 4: Dados para determinar a espessura do tubo. 
 
 
Considere-se, p.ex., uma seção retangular de lados mmhb 600/400/ = , 
cobrimento mmc 30= , diâmetro do estribo mmt 10=φ , e diâmetro da barra 
longitudinal de canto mml 20=φ . De (4) resulta: 
 

ltcc φφ 5,01 ++=

1c  

c lφ

tφ
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Logo, pode-se escolher mmhe 100≥ . Escolhe-se um valor máximo se a 
condição de esmagamento do concreto for determinante, do contrário é melhor 
escolher um valor mínimo, pois resulta diminuição das áreas de armadura com 
o aumento do braço de alavanca. Ver adiante.  
 

(d) O monolitismo entre as diferentes paredes deve ser garantido através 
das armaduras, bem detalhadas e ancoradas nos nós comuns. Ver as 
Figuras 5 e 10.  

 
 

 
 
 

Figura 5: Dados para determinar a espessura do tubo. 
 
 
2.2 Equações fundamentais. 
 
As equações que permitem o dimensionamento no ELU são deduzidas a seguir 
para uma seção retangular, cf. a Figura 6. Entretanto, as equações deduzidas 
são válidas para qualquer seção poligonal convexa (cheia ou vazada). Para 
mais informações, ver a NBR 6118: 2003, itens 17.5 a 17.7. 
 
 

Canto pode destacar 

he 

se 

he,ef 

(a) Seções maciças. (b) Seções vazadas (p.ex., seção caixão em 
pontes). 

Sentido do fluxo de 
cisalhamento 

Em seção caixão com estribos de 2 ramos 
por parede, pode-se fazer he= he,ef . Se o 

estribo tiver um ramo só, a espessura he é 
calculada como se a seção fosse maciça  

(cf. Marti, P.)  
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Figura 6: Forças cortantes nas paredes do tubo e equilíbrio das tensões tangenciais nos 
planos longitudinais. 

 
 
Conforme se mostrou na Figura 2, as tensões tangenciais que equilibram o 
momento torçor distribuem-se uniformemente nas paredes do tubo. Na Figura 6 
(b), o equilíbrio do elemento na direção longitudinal exige a igualdade: 
  

2211 ee hh ττ =  (5)

 
Esta equação mostra que o produto eiihτ  da ésimai −  parede – denominado 
fluxo de cisalhamento – é constante na seção (dimensão LF ). Logo, a força 
cortante na parede i  é o produto do fluxo pelo correspondente comprimento iz  
da parede. 
 

ieiiti zhV τ=  (6)

 
Como as forças cortantes das diferentes paredes equilibram o momento torçor, 
tem-se, usando a (6): 
 

)2( 21122221111221 zzhzzhzzhzVzVT eiieettd τττ =+=+=  

 
Logo, o fluxo de cisalhamento resulta igual a: 
 

e

d
eii A

Th
2

=τ  (7)

 
Esta é a fórmula de Bredt, estudada na Resistência dos Materiais.  
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(b) Equilíbrio na direção 
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(a) Decomposição do momento torçor 
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Nesta equação, substituiu-se 21zz  pela área eA  contida no perímetro médio das 
paredes do tubo. Substituindo-se (7) em (6), obtém-se a força cortante em cada 
parede i : 
 

i
e

d
ti z

A
TV
2

=  (8)

 
A partir deste ponto, a torção é considerada de modo inteiramente análogo ao 
tratamento dado à força cortante atuante na alma de uma viga. Ver a Figura 7, 
a qual mostra metade da face ABB´A´ da peça da Figura 6.  
 
 

 
 

Figura 7: Forças resistentes e força solicitante na parede i do tubo. 
 
 
A segurança do concreto contra esmagamento resulta dividindo-se a força de 

compressão diagonal 
θsin

tiV  pela área da seção ortogonal à sua direção, a 

saber, θcosiei zh . Ver a Figura 7. A tensão principal resultante é limitada a um 
valor mais rigoroso do que o de força cortante, por causa da mudança brusca 
de direção do fluxo de cisalhamento nos cantos das paredes, mostrada na 

Figura 5 (a). A limitação estabelecida na NBR 6118: 2003 é 
2,1

2cdf . Logo, para a 

segurança do concreto deve-se ter: 
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Força resistente na armadura transversal (estribos a 
90º em relação ao eixo longitudinal da peça): 

zicosθ  

s

θθ cot
2
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e

d
tiywdisl z

A
TVfA ==  θsin/tiV

Força resistente na armadura 
longitudinal da parede i: 

se 

θsin/tiV
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Como cd
ck

cd fff )
250

1(6,02 −= , com ckf  em MPa , e observando que 

θ
θθθ

cot
cot

1
cossin
1

+= , resulta: 
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ck

eie
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eie

d
tcwd ff

hA
T
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1(5,0)cot

cot
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1

, −≤+== θ
θθ
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Como se vê nesta expressão, a compressão no concreto é máxima onde a 
espessura do tubo for mínima (paredes com espessuras diferentes podem 
ocorrer seções-caixão). A equação que contém )2sin( θ  tem uso mais fácil 
quando se deseja obter o mínimo ângulo θ  possível, sem alterar a seção (ou 
seja, eih  e eA ) e/ou a resistência do concreto. Note-se que, se ocorrer a 
impossibilidade 1)2sin( >θ , é preciso alterar obrigatoriamente a seção e/ou a 
resistência do concreto.  
 
Conforme mostra a Figura 7, a armadura transversal, ortogonal ao eixo da 
peça, deve resistir à força cortante tiV  no segmento θcotiz . Sendo s  o 
correspondente espaçamento longitudinal, o número de estribos nesse 

segmento é igual a 
s

zi θcot . Como a área do estribo existente na espessura eh  

do tubo é º90sA , tem-se a força total resistida pelos estribos, ywd
i

s f
s

zA θcot
º90 , 

igual a tiV . Logo, usando a (8), obtém-se: 
 

θcot2
º90

e

d
ywd

s

A
Tf

s
A

=  (10)

 
Nas seções maciças, usualmente tem-se, dentro da espessura do tubo, um 
único ramo de estribo compondo a área º90sA . Se a seção for efetivamente 
vazada (como em seção-caixão de viga de ponte, mostrada na Figura 5 (b)), 
deve-se incluir em º90sA  todos os ramos do estribo (usualmente dois) contidos 
na parede considerada.  
 
A armadura longitudinal da parede i  deve, por sua vez, resistir à componente 
longitudinal da resultante do campo de compressão, θcottiV . Ver a Figura 7. 
Sendo ydisl fA ,  a força total resistida pela armadura longitudinal da parede i , 
resulta, usando de novo a (8): 
 

θcot
2, i

e

d
ydisl z

A
TfA =  
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Somando as forças longitudinais de todas as paredes, obtém-se, pondo 
∑ = slisl AA , (área total da armadura longitudinal) e ei uz =∑  (perímetro da 
parede média do tubo): 
 

θcot
2 e

d
yd

e

sl

A
Tf

u
A

=  (11)

 
Dividindo (10) e (11) entre si, obtém-se: 
 

θ2º90 cotywd
s

yd
e

sl f
s

Af
u
A

=  (12)

 
Esta expressão mostra que, sendo iguais as resistências das armaduras 
longitudinal e transversal ( ywdyd ff = ), a armadura longitudinal por unidade de 

comprimento da parede média do tubo é θ2cot  vezes maior que a armadura 
transversal por unidade de comprimento longitudinal da peça. Note-se ainda 
que estas duas áreas por unidade de comprimento são iguais para º45=θ . 
 
Das equações (9), (10) e (11) pode-se ver que se θ  diminuir (e, portanto, se 

θcot  aumentar) aumentam a tensão de compressão no concreto e o consumo 
de armadura longitudinal, e simultaneamente diminui o consumo da armadura 
transversal. 
 
Para resistir à torção, os estribos devem ser fechados e devem envolver as 
barras da armadura longitudinal, cf. se vê na Figura 5. Valem, adicionalmente, 
as mesmas prescrições para os estribos de força cortante. Nos cantos do 
estribo deve existir uma barra longitudinal de diâmetro pelo menos igual a 

mm10 . A armadura longitudinal pode ser concentrada nos cantos das paredes, 
se a respectiva altura não superar mm350 . 
 
A taxa geométrica mínima das armaduras de torção é estabelecida no item 
17.5.1.2 da NBR 6118: 2003. Para a seção retangular, essa taxa vale: 
 

ywk

ctm
swsl f

f2,0≥= ρρ  

ew

sl
sl

w

sw
sw ub

A
sb

A
== ρρ ,  

(13)

 
onde 3/23,0 ckctm ff = , em MPa , e MPafywk 500=  para o CA-50 e CA-60. Como 
se vê, a taxa geométrica da armadura transversal mínima é a mesma 
estabelecida para força cortante. A taxa geométrica mínima da armadura 
longitudinal pressupõe seu volume, por unidade de comprimento longitudinal da 
peça, igual ao volume da armadura transversal nesse mesmo comprimento. 
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3. Torção combinada com força cortante 
 
A torção dificilmente aparece sozinha nas estruturas, como aliás acontece 
também com os demais esforços solicitantes. No caso de atuação simultânea 
de momento torçor e força cortante, a NBR 6118: 2003 permite calcular as 
armaduras em separado e somá-las em seguida. Neste cálculo, adota-se o 
mesmo ângulo θ  para ambas as solicitações. 
 
A verificação da segurança do concreto da diagonal, na parede onde as 
tensões tangenciais da força cortante e da torção se somam, por terem o 
mesmo sentido, é dada pela seguinte condição: 
 

1
)

2,1
( 2

,

2

, ≤+
cd

Tcwd

cd

Vcwd

ff
σσ

 

 

)cot
cot

1(
)2sin(

2
, θ

θθ
σ +==

zb
V

zb
V

w

d

w

d
Vcwd  

 

)cot
cot

1(
2)2sin(

1
, θ

θθ
σ +==

ee

d

ee

d
Tcwd hA

T
hA

T
 

(14)

 
Nestas expressões, ambos os esforços são tomados em valor absoluto, como 
no dimensionamento das armaduras. Na expressão de Vcwd ,σ , a distância z  
entre os banzos comprimido e tracionado pelo momento fletor pode ser 
estabelecida como aquele da seção de momento máximo, obtido no 
dimensionamento à flexão no ELU. A NBR 6118: 2003 adota, como 
simplificação, o valor dz 9,0= , sendo d  a altura útil da seção de momento 
máximo.  
 
A força no banzo inferior (ou mais tracionado), considerando-se as influências 
dos três esforços solicitantes, é igual a: 
 

θθ cotcot
2
1

inf,inf, dtd
d

s VV
z

MR ++=  

 
onde inf,dtV  é a força cortante na parede inferior proveniente da torção. Seu 
valor é dado pela Equação (8), com ei hbz −= . Logo: 
 

θθ cot)(
2

cot
2
1

inf, e
e

d
d

d
s hb

A
T

V
z

MR −++=  (15a)

 
No banzo superior (ou comprimido ou menos tracionado), tem-se: 
 

θθ cot)(
2

cot
2
1

sup, e
e

d
d

d
s hb

A
T

V
z

MR −++−=  (15b)
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Estas expressões são válidas nas zonas B (zonas da viga sem mudança 
brusca de carga, e/ou geometria e/ou armadura). Nelas, só o momento fletor 
deve entrar com seu sinal, pois tanto a força cortante quanto o momento torçor 
sempre produzem tração longitudinal, independentemente dos respectivos 
sinais.  
 
Na equação da força do banzo comprimido ou menos tracionado aparecem as 

influências do momento fletor e da força cortante (parcelas 
z

Md−  e θcot
2
1

dV ), 

as quais são desprezadas no dimensionamento da armadura longitudinal desse 
banzo, cf. a NBR 6118: 2003. É possível diminuir a armadura calculada apenas 
com a parcela oriunda do momento torçor, desde que se obedeça a valores 
mínimos da armadura e as barras de canto tenham diâmetro pelo menos igual 
ao mínimo especificado em norma. Para que a desconsideração dessas duas 
parcelas esteja a favor da segurança, é necessário que no banzo comprimido 
(ou menos tracionado) se verifique a seguinte condição: 
 

θθθ cot)(
2

cot)(
2

cot
2
1

e
e

d
e

e

d
d

d hb
A

T
hb

A
T

V
z

M
−≤−++−  

 
Ou seja: 
 

θcot
2
1 zVM dd ≥  (16)

 
Se esta inequação não se verificar, é mais desfavorável dimensionar a 
armadura pela Equação (15b). 
 
 
4. Exemplos 
 
4.1 Dimensionar a viga de seção retangular em balanço da Figura 8 sujeita 
unicamente a um binário aplicado em sua extremidade. A seção transversal é 
quadrada. Adotar MPafck 20=  e CA-50, cobrimento mmc 30= , estribo 

mmt 10=φ  e armaduras longitudinais mml 16=φ  nos cantos e mmt 10=φ  nas 
faces.  

 
 

 
 

Figura 8: Viga sob torção simples. 
 

b=0,40m
L=2 m 

h=0,40m

Fd=140 kN

Fd=140 kN
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Como se vê, esta viga tem como esforço solicitante unicamente um momento 
torçor constante e igual a kNmbFT dd 5640,0140 =×== .  
 
Geometria do tubo resistente:  

mmcmmhe 96482)165,01030(22100
4004

400
1

2

=×=×++×=≥=
×

= , donde, 

 
mmhe 100= , 22 90000300))(( mmhhhbA eee ==−−= , mmue 12003004 =×= . 

 
Determinação de θ : da condição de segurança do concreto dada por (14) 
obtém-se 
 

MPaf
hA

T cd

ee

d
Tcwd 57,6

4,1
20)

250
201(5,0

2,1)2sin(10090000
1056

)2sin(
1 2

6

, =−=≤
××

×
==

θθ
σ  

 
Donde, 947,0)2sin( ≥θ , ou seja, º2,712 ≥θ . Escolhe-se º5,35=θ , 4,1cot =θ .  
 
Armaduras: de (10) e (11) resultam 
 

m
mm

mm
mm

s
As

226
º90 511511,0

4354,1900002
1056

==
×××

×
=  

 

m
mm

mm
mm

u
A

e

sl
226

1001001,14,1
435900002

1056
==×

××
×

=  

 
Escolhe-se estribo mmt 10=φ , 2

º90 80 mmAs = , donde o espaçamento 

ms 15,0157,0
511
80

≅== . 

 
A armadura longitudinal total no perímetro mue 4,1=  vale 

214014,11001 mmAsl =×= . Pode-se adotar 164φ , uma barra em cada canto do 
estribo, e adicionalmente 102φ  uniformemente espaçados em cada uma das 4 
faces, perfazendo um total efetivo igual a 21440)802(42004 mmAsl =××+×= .  
 
As barras longitudinais devem ser bem ancoradas tanto no engaste quanto na 
seção onde se aplica o binário. Além disso, os estribos devem ser fechados, 
com ganchos dobrados a º135 , fazendo, portanto, º45  com os seus ramos.  
 
A armadura mínima no caso não prevalece, pois de (13) obtém-se: 
 

%088,0
500

203,02,0
3/2

=
×

≥= swsl ρρ , 
mm
mm

u
A

s
A

e

slsw
2

minmin 354,0400
100
088,0)()( =×== .                               
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4.2 Dimensionar no ELU a seção retangular da Figura 9 sujeita aos esforços 
kNVd 215= , kNmM d 1,188=  e kNmTd 9,55=  atuantes simultaneamente. Dados: 

 
Resistências: MPafck 30= , aço CA-50.  
Geometria da seção: mmhb 600/300/ = , distância da borda da seção ao eixo 
da barra de canto mmc 501 = , cobrimento mmc 30= , diâmetro do estribo 

mmt 10=φ .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 9: (a) Geometria da seção e esforços solicitantes; (b) Decomposição dos esforços 
solicitantes.  

 
 
1º Passo: Geometria do tubo resistente 
 

mm
hb

bh
u
Ahe 100

9002
600300

)(2
=

×
×

=
+

== , e mmche 1005022 1 =×=≥ . Logo, 

 
mmhh efee 100, == , 2510500200 mmAe =×= , mmue 1400)500200(2 =+×= . 

 
 
2º Passo: Verificação da segurança do concreto diagonal para a ação 
simultânea de SdSd TeV . Ver as Equações (14). 
 
Esforços solicitantes: kNVSd 215=  e kNmTSd 90,55=  
 

h=0,60 m 

b=0,30 m 

z1=h-he 
Td=55,9 kNm

Md=188,1 kNm 

kNhb
A

T
e

e

d 9,55)(
2

=−

kNhb
A

T
V

z
M

e
e

d
d

d 332232,1862,376cot)(
2

cot
2
1

=++−=−++− θθ

1

2

3
4

z2=z4=0,20 m 

z1=z3=0,50 m

ee

d
T hA

T
2

=τ  

1bz
Vd

V =τ  

kNhb
A

T
V

z
M

e
e

d
d

d 4,7852232,1862,376cot)(
2

cot
2
1

=++=−++ θθ
 

Vd=215 kN

z2=b-he 

kNhb
A

T
e

e

d 9,55)(
2

=−
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Tensões de compressão na diagonal: 
 

)2sin(
6,5

)2sin(10010
109,55

)2sin(
1

)2sin(
076,3

)2sin(
2

466300
10215

)2sin(
2

5

6

,

3

,

θθθ
σ

θθθ
σ

=
××
×

==

=
×
×

==

ee

Sd
Tcwd

w

Sd
Vcwd

hA
T

zb
V

 

 
 

Resistências: para a força cortante: MPafcd 31,11
4,1

30)
250
301(6,02 =−= , e 

   para o momento torçor: MPafcd 43,9
2,1
31,11

2,1
2 == . 

 

Condição de segurança: 1
)

2,1
( 2

,

2

, ≤+
cd

Tcwd

cd

Vcwd

ff
σσ

 ou  

 

º30º602,866,0)2sin(,1
)2sin(

1)
43,9
6,5

31,11
076,3( ≥≥≥≤+ θθθ

θ
ouedonde . 

 
Adota-se º30=θ . Note-se que a influência da torção é preponderante neste 
exemplo. 
 

Como 
3
2169,031,0

)
2,1

( 2

,

2

, >=+=+
cd

Tcwd

cd

Vcwd

ff
σσ

, o espaçamento máximo do estribo é 

limitado ao menor dos dois valores seguintes: 
 

mm
mm

mmd
s 165

200
1655503,03,0

minmax =
⎭
⎬
⎫

⎩
⎨
⎧ =×=

=  

 
Se ocorresse o oposto na desigualdade acima, seria: 
 

⎭
⎬
⎫

⎩
⎨
⎧

=
mm

d
s

300
6,0

minmax  

 
 
3º Passo: Armaduras de força cortante 
 
Armadura transversal (Estribos verticais de 2 ramos, ou seja, a área swA  refere-
se a 2 ramos): 
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m

mm
mm
mm

fz
V

s
A

ywd

Sdsw
223

612612,0
435732,1466

10215
)cot(

==
××

×
==

θ
 

 
Armadura longitudinal (somente no banzo inferior tracionado, pois o superior 

sofre descompressão pela mesma parcela kNVSd 2,186cot
2
1

=θ  e pela ação do 

momento torçor): 
 

2
3

, 428
435

732,1102155,0cot
2
1 mm

f
VA

yd

Sd
Vsl =

×××
==

θ  

 
 
4º Passo: Armaduras de torção. Ver as equações (10) e (11). 
 
Armadura transversal: 
 

m
mm

mm
mm

fA
T

s
A

ywde

ds
22

5

6
º90 371371,0

435732,1102
109,55

)cot2(
==

×××
×

==
θ

 

 
Armadura longitudinal:  
 

m
mm

s
A

fA
T

u
A s

yde

d

e

sl
2

2º90 11133371cot)(cot
2

=×=== θθ  

 
 
5º Passo: Composição da armadura 
 
(a) Estribos verticais de 2 ramos 
 
Observando que º90sA  é a área de 1 ramo do estribo, ao passo que swA  é a 
área de 2 ramos do estribo, um em cada face lateral da viga, obtém-se a área 
total de estribos de 2 ramos igual a: 
 

m
mm

s
A

s
A

s
A

T
s

V
sw

TV
sw

2
º90 13543712612)(2)()( =×+=×+=+  

 
A área total de um estribo 10φ , 2 ramos, é igual a 2160802 mmAsw =×= , donde 
o espaçamento longitudinal: 
 

msms 165,0max10,0118,0
1354
160

=≤≅== . 

 
(b) Armadura longitudinal no banzo inferior.  
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A força do banzo inferior decorre da Equação (15a). Dividindo-a pela 
resistência ydf  do aço, obtém-se a área total da armadura longitudinal nesse 
banzo.  
 

2inf,
inf,

inf,

5

3

inf,

1515223428865

2,6598,962,1862,376

º30cot200
102

109,55º30cot
2

215
50,0

1,188

mm
f

R
A

kNR

R

yd

s
sl

s

s

=++==

=++=

×
×

++=

 

 
Adota-se 21575205 mm=φ . A parcela excedente pode ser alocada às duas 
faces laterais, donde a área 2302/)15151575( mm=−  para cada uma.  
 
(b) Armadura longitudinal nas faces verticais e na face superior: 
 
Deve-se usar mml 10≥φ  nos cantos do estribo, e espaçamento es  ao longo do 
perímetro eu  não superior a m35,0 . 
 
A armadura longitudinal total devida à torção vale 2

, 15584,11113 mmA Tsl =×= . 
Em cada face maior deve-se ter a parcela: 
 

2
, 5561558

40,1
50,0)( mmA

u
hh

Tsl
e

e ==
−  

 
E em cada face menor: 
 

2
, 2231558

40,1
20,0)( mmA

u
hb

Tsl
e

e ==
−  

 
A armadura excedente da face menor também pode ser computada nas faces 
maiores. Dispondo-se 3 barras de diâmetro mml 5,12=φ  na face superior, sobra 
para cada face maior a área 2762/]2231253[ mm=−× .  
 
Finalmente, em cada face lateral deve-se ter: 
 

2450)3076556( mm=−−  
 
Adota-se 25005,124 mm=φ  entre as barras de canto, com espaçamento 

cmse 10= . 
 
Ver na Figura 10 a disposição da armadura na seção transversal. 
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Figura 10: Detalhamento da armadura na seção transversal. 
 
 
Por último, note-se na Figura 9 (b) que a armadura do banzo superior – neste 
exemplo, tracionado – está em excesso, a favor da segurança com a 
desconsideração dos efeitos do momento fletor e da força cortante, pois a 
inequação (16) se verifica:  
 

kNmzVkNmM dd 10,93º30cot50,0
2

215cot
2
11,188 =×=≥= θ  

 
Somente se o momento fletor fosse menor que kNm1,93  (e mesmo negativo), 
seria mais desfavorável calcular a armadura do banzo superior com a influência 
dos três esforços, através de (15b).  
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As barras �12,5 se estendem por toda a viga, 
e devem ser bem ancoradas nos apoios. 

cmse 10=  

cmse 10=  
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