UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL

ECV 114 – FUNDAÇÕES E OBRAS DE TERRA

FUNDAÇÕES RASAS – INTRODUÇÃO

Prof. Ana Paula Moura ana.paula.moura@live.com

PROGRAMAÇÃO DA AULA

- 1) Parâmetros do solo;
- 2) Filosofias de projeto;
- 3) Modos de ruptura;
- 4) Bulbo de tensões

- A) Coesão: Principal parcela da resistência dos solos finos: argilas
 - B) Ângulo de atrito: Principal parcela da resistência dos solos granulares: areias
 - C) Peso específico

Os solos são compostos por vários tipos de grãos, logo vão apresentar tanto coesão como ângulo de atrito → Ensaios de cisalhamento direto ou de compressão triaxial.

"A resistência ao cisalhamento desenvolvida no interior das massas de solos é a responsável pela capacidade que os solos tem de suportar as tensões desenvolvidas pelas solicitações conservando sua estabilidade. Caso contrário as tensões desenvolvidas nas massas de solo podem levar a uma condição de desequilíbrio e consequentemente a sua ruptura. Conhecendo-se a resistência interna ao cisalhamento estaremos aptos a realizar dimensionamento de estruturas de terra e fazer verificações das condições de estabilidade dessas massas de solo."

Solos saturados (argilas moles): parâmetros de resistência dependem das condições de carregamento variando de não drenado a drenado.

Capacidade de carga:

- Condição crítica → não drenada;
- Tende a aumentar com a dissipação das pressões neutras.

Capacidade de carga com valores não drenados é menor.

A) Coesão

a) Ensaios de laboratório

b) Teixeira e Godoy (1996) - correlação com N_{spt} :

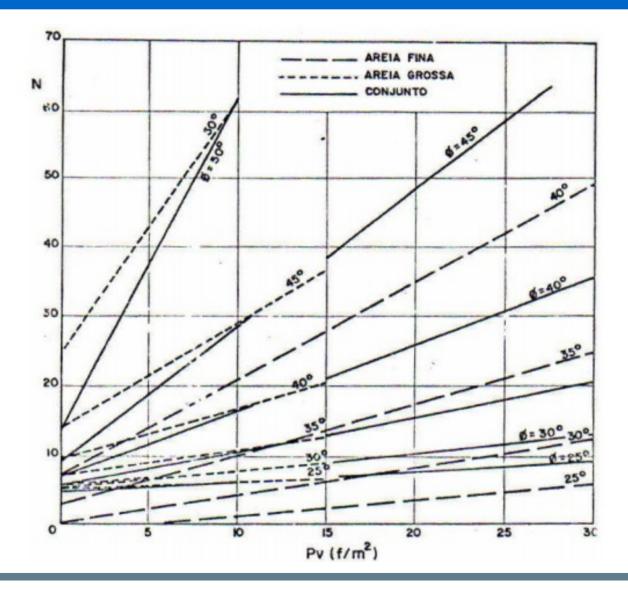
 $c = 10 N_{spt} (kPa)$

B) Ângulo de atrito

a) Ensaios de laboratório

b) Godoy (1983) - condição não drenada

$$\Phi = 28^{\circ} + 0.4 N_{spt}$$


c) Teixeira (1996) - condição não drenada

$$\Phi = (20N_{spt})^{1/2} + 15$$

d) Mello (1971): Areias - Gráfico

B) Ângulo de atrito

C) Peso específico

a) Ensaios de laboratório

b) Godoy (1972) - tabelas

Nspt	Consistência	Peso específico (kN/m³)
≤ 2	Muito Mole	13
3 - 5	Mole	15
6 - 10	Média	17
11 - 19	Rija	19
≥ 20	Dura	21

C) Peso específico

<u>b) Godoy (1972) – tabelas</u>

Nont	Compacidade	Peso específico (kN/m³)		
Nspt		Seca	Úmida	Saturada
≤ 5	Fofa	16	18	19
5 - 8	Pouco compacta	16	18	19
9 - 18	Medianamente compacta	17	19	20
19 - 40	Compacta	18	20	21
≥ 40	Muito compacta	18	20	21

C) Peso específico

<u>b) Godoy (1972) – tabelas</u>

***Areia saturada – peso específico submerso – para cálculo de capacidade de carga usar peso específico efetivo, ou seja, desconta o peso específico da água.

Forças externas:

- Ações permanentes
- Ações variáveis
- Ações excepcionais

Forças reativas internas → Esforços solicitantes

- Normal
- Cortante
- Momento fletor e torçor.

DETERMINAÇÃO DA RESISTÊNCIA ADMISSÍVEL:

"Tensão adotada em projeto que, aplicada pela fundação, atende, com fatores de segurança pre determinados, aos estados limites último (ruptura) e de serviço (deformações)."

Em outras palavras: "É a carga que,aplicada à sapata, que provoca recalques que não produzem inconvenientes à estrutura e, simultaneamente, oferece segurança satisfatória à ruptura ou escoamento da fundação."

$$S_a = \frac{R_{med}}{FS}$$

- Solicitação admissível:
- → Tensão admissível → Fundações diretas
- → Carga admissível → Estacas
- Valor médio de resistência com 50% de probabilidade de ocorrência de valores inferiores;
- Fator de segurança global.

$$S_a = \frac{R_{med}}{FS}$$

$$S_i \leq S_a$$

$$FS = \frac{R_{med}}{S_{med}}$$

- Solicitação em cada elemento ≤ Solicitação admissível;
- Solicitação média não deve ultrapassar a admissível;
- Mas, a favor da segurança, a prática consagrou verificar todos os valores disponíveis de solicitação, inclusive o máximo.

$$\sigma_a = \frac{\sigma_{rmed}}{FS}$$

- Tensão admissível: tensão vertical que cada sapata ou tubulão aplica no maciço de solo;
- Valor médio da capacidade de carga;
- Fator de segurança global → 3 para fundação direta e 2 para indireta.

Fatores que influenciam a escolha do coeficiente de	COEFICIE		E DE SEGURANÇA	
segurança	PEQUENO		GRANDE	
Propriedades dos materiais	Solo homogêneo Investigações geotécnicas amplas			homogêneo ões geotécnicas escassas
Influências exteriores tais como: água, tremores de terra, etc.	Grande número de informações, medidas e observações disponíveis		Poucas informações disponíveis	
Precisão do modelo de cálculo	Modelo bem representativo das condições reais			rosseiramente tivo das condições reais
Consequências em caso de acidente	Consequências financeiras limitadas e sem perda de vidas humanas	Consequências financeiras consideráveis e risco de perda de vidas humanas		Consequências financeiras desastrosas e elevadas perdas de vidas humanas

B) FILOSOFIA DOS VALORES DE CÁLCULO

$$\gamma_f N_k \leq \frac{R_{c,k}}{\gamma_m}$$

 $\gamma_f = \text{coef. de majoração das ações}$

 $N_k = \text{carga característica (atuante)}$

 $R_{c,k}$ = resistência característica

 γ_m = coef. de minoração da resistência

- Valor de cálculo da solicitação ≤ Valor de cálculo da resistência;
- Fator de segurança parcial.

Pag. 20 e 21 - Considerações sobre as tensões admissíveis

- 1)Métodos teóricos
- 2)Métodos semi empíricos
- 3)Prova de carga sobre placa

- 1)Métodos teóricos: aplicação das fórmulas de capacidade de carga para estimativa da tensão – estudos teóricos;
- 2)Métodos semi empíricos: correlações propostas a partir de resultados "in situ", como o SPT.
- 3)Prova de carga sobre placa: ensaio método prático.

Na escolha do fator de segurança é importante levar em consideração o nível de conhecimento do terreno e as características da estrutura.

Vesic, 1975:

Tipo de estrutura	Características	Investigação do subsolo	
		Ampla	Limitada
Pontes ferroviárias, depósitos, silos, obras hidráulicas, muros de arrimo, chaminés	A carga máxima pode ocorrer com frequência. Ruptura com consequências desastrosas.	3,0	4,0
Pontes rodoviárias, prédios industriais ou públicos de pequeno porte	A carga máxima ocorre ocasionalmente. Ruptura com consequências sérias.	2,5	3,5
Edificios de apartamentos ou escritórios	A carga máxima tem pouca probabilidade de ocorrer	2,0	3,0

NBR6122:2010 – Projeto e execução de fundações

Tabela 1 – Fundações superficiais – Fatores de segurança e coeficientes de minoração para solicitações de compressão

Métodos para determinação da resistência última	Coeficiente de minoração da resistência última	Fator de segurança global
Semi-empíricos a	Valores propostos no próprio processo e no mínimo 2,15	Valores propostos no próprio processo e no mínimo 3,00
Analíticos ^b	2,15	3,00
Semi-empíricos a ou analíticos b acrescidos de duas ou mais provas de carga, necessariamente executadas na fase de projeto, conforme 7.3.1	1,40	2,00

a Atendendo ao domínio de validade para o terreno local.

Sem aplicação de coeficientes de minoração aos parâmetros de resistência do terreno.

NBR6122:1996 – Projeto e execução de fundações

Tabela 4 - Pressões básicas (σ_o)

Classe	Descrição	Valores (MPa)
1	Rocha să, maciça, sem laminação ou sinal de decomposição	3,0
2	Rochas laminadas, com pequenas fissuras, estratificadas	1,5
3	Rochas alteradas ou em decomposição	ver nota c)
4	Solos granulares concrecionados - conglomerados	1,0
5	Solos pedregulhosos compactos a muito compactos	0,6
6	Solos pedregulhosos fofos	0,3
7	Areias muito compactas	0,5

NBR6122:1996 – Projeto e execução de fundações

Tabela 4 - Pressões básicas (o)

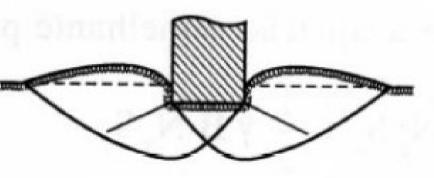
Classe	Descrição	Valores (MPa)
8	Areias compactas	0,4
9	Areias medianamente compactas	0,2
10	Argilas duras	0,3
11	Argilas rijas	0,2
12	Argilas médias	0,1
13	Siltes duros (muito compactos)	0,3
14	Siltes rijos (compactos)	0,2
15	Siltes médios (medianamente compactos)	0,1

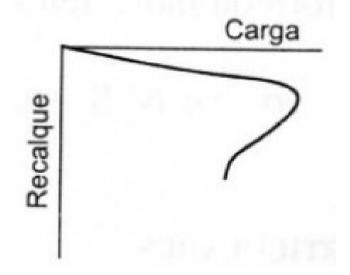
Resumindo...

Tensão admissível → capacidade de carga dividida por um fator de segurança global

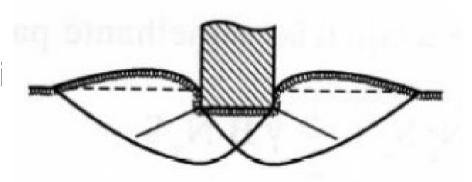
e

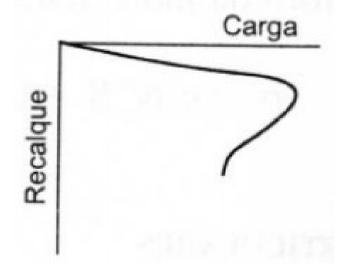
Verificar se ocorrerão recalques excessivos!


A partir da observação de ensaios e de catástrofes, constata-se que a capacidade de suporte do solo provém dos modelos:

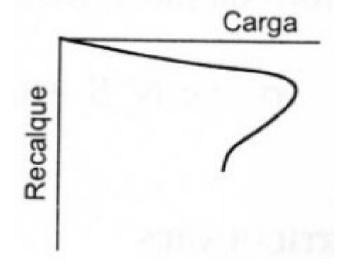

- A) Ruptura generalizada
 - B) Ruptura localizada
- C) Ruptura por puncionamento

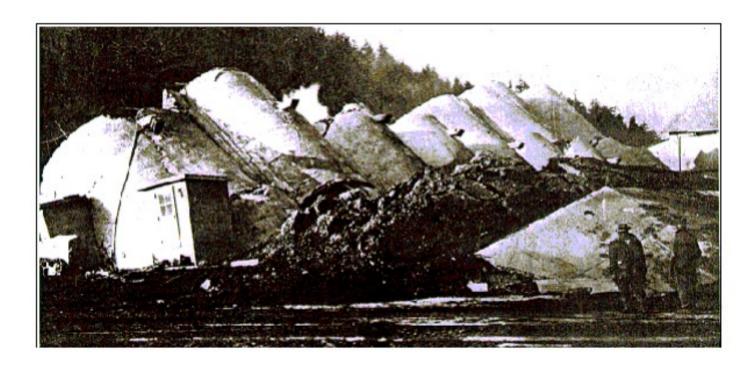
O tipo de ruptura ocorrerá em função da compressibilidade do solo, geometria da fundação, carregamento e embutimento.


- Formação de uma cunha que tem movimento vertical pra baixo e que empurra lentamente duas outras cunhas, que tendem a levantar o solo adjacente à fundação.
- Superfície de ruptura bem definida;

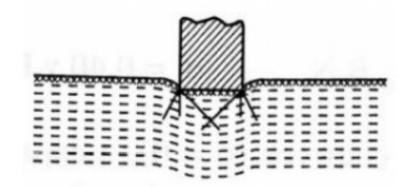


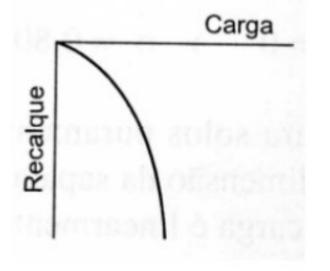

- Nota-se um ponto de carga máxil
- A formação da protuberância na superfície é acompanhada pelo tombamento da fundação – a sa pode girar;
- Frágil Súbita Catastrófica
- Baixos valores de recalque;





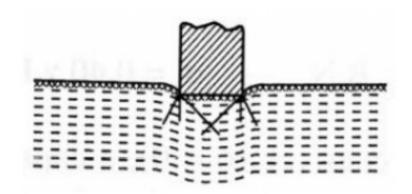
- Solos mais resistentes (menos deformáveis) com sapatas suficientemente rasas;
- Areia compactada e muito compactas e argilas rijas e duras

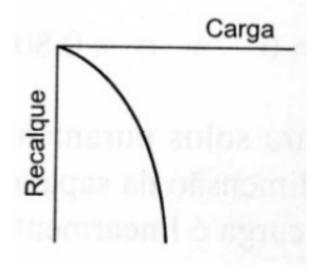



Ruptura geral nas fundações de silos de concreto armado (TSCHEBOTTARIOFF, 1978)

B) Ruptura por puncionamento

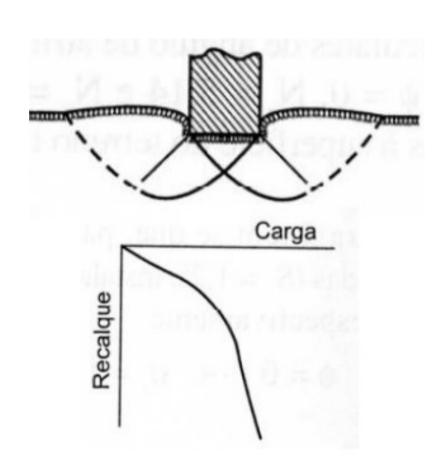
- Movimento vertical da fundação e a ruptura é verificada pelos recalques
 - → Deslocamento da sapata para baixo, sem desaprumar;
- O solo fora da área carregada praticamente não participa e não há movimentação do solo na superfície;



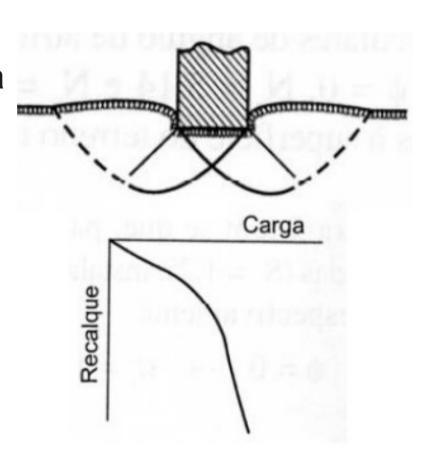


B) Ruptura por puncionamento

- O padrão de ruptura não é facilmente observado;
- Para a carga de ruptura os recalques passam a ser incessantes com ou sem acréscimo de carga.
- Solos mais deformáveis (menos resistentes);



C) Ruptura localizada

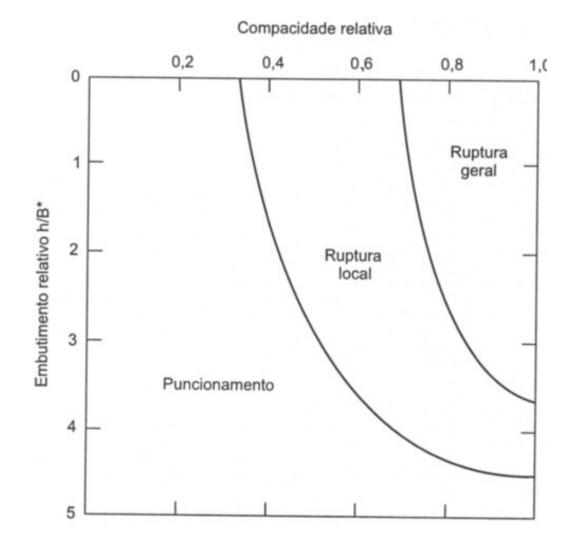

- Caso intermediário;
- Solos de média resistência;
- O padrão só é bem definido logo abaixo da fundação;
- Não gira;

C) Ruptura localizada

- Poucos incrementos de carga causa recalques acentuados;
- Não há colapso catastrófico;
- Ocorre com frequência em sapatas mais profundas e tubulões;
- Transição.

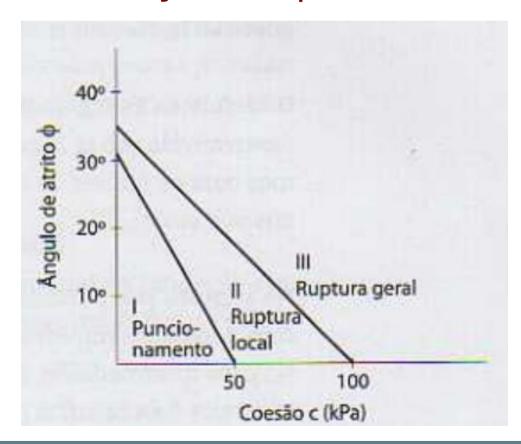
Resumindo...

- Ruptura geral → Areia compacta a muito compacta e argila rija a dura;
- Ruptura por puncionamento → Areia pouco compacta a fofa e argila mole a muito mole;
- Ruptura local → Areia medianamente compacta e argilas médias.



O modo de ruptura não depende somente da rigidez do solo. E o efeito do embutimento da sapata no maciço?

Para o caso de areia, Vesic (1975) considera o embutimento relativo da sapata h/B* e estabelece:

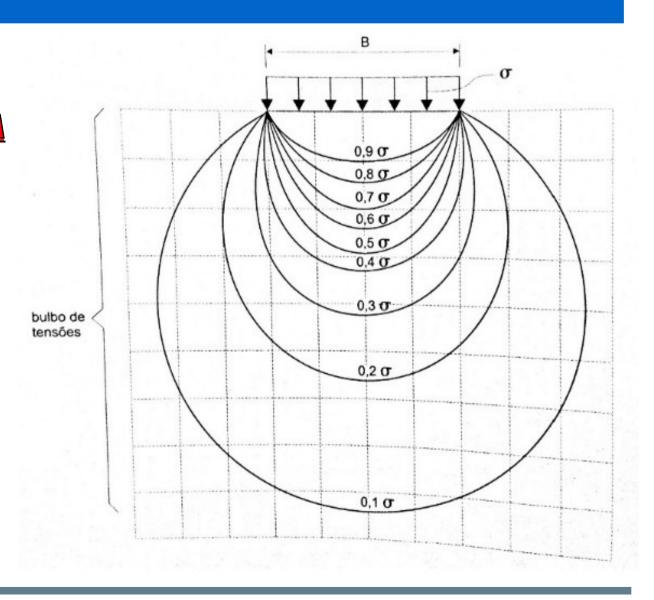

$$B^* = \frac{2BL}{B+L}$$

Modo de ruptura em solo c - φ

Diagrama em função dos parâmetros do solo

Fatores que influenciam no modo de ruptura:

- 1)Rigidez: quanto mais rígido → ruptura geral;
- 2)Geometria do carregamento profundidade relativa (h/B): quanto maior a profundidade → ruptura por puncionamento;
- 3)Geometria do carregamento geometria em planta (L/B): não apresenta clareza;
- 4)Excentricidade e inclinação da carga.



4. BULBO DE TENSÕES

TENSÃO SOB A SAPATA VARIA COM A PROFUNDIDADE

Isóbara: Lugar geométrico dos pontos que sofrem o mesmo acréscimo de tensão.

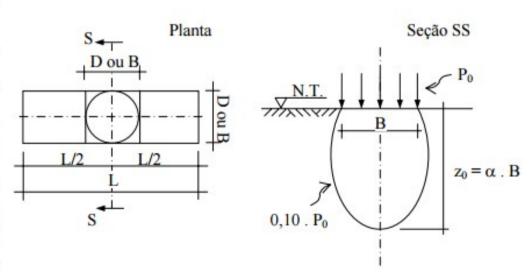
Curvas isobáricas

4. BULBO DE TENSÕES

Profundidade do bulbo de tensões:

- Sapata circular ou quadrada (L = B) → z = 2B
- Sapata retangular (L = 2 a 4 B) → z = 3B
- Sapata corrida (L ≥ 5B) → z = 4B

"Para efeito da capacidade de carga e determinação dos parâmetros do solo não importa o solo que estiver além da profundidade z = 2B."



4. BULBO DE TENSÕES

Aplicações práticas do conceito de bulbo de pressões (BARATA, 1993)

Pelos resultados experimentais e pelas expressões de $\Delta \sigma$ 'v = σz para o caso de áreas carregadas, pode-se depreender que, quanto maiores às dimensões da fundação, maiores serão as tensões a uma dada profundidade, ou, em outras palavras, quanto maiores às dimensões da placa carregada, maior a massa de terra afetada pelo bulbo de pressões. Inicialmente, convém que se saiba que o bulbo de pressões atinge uma profundidade $Zo = \alpha$. B, conforme esta representado na figura 7.29, sendo B a largura (menor dimensão) da área carregada e α um fator que depende da forma desta área. Valores de α são fornecidos na tabela na mesma figura, calculados pela teoria da elasticidade, para o caso de base à superfície do terreno (no caso de base abaixo da superfície, os valores de α serão menores que os da tabela, deles não diferindo substancialmente, todavia). Em solos arenosos os valores da tabela deverão ser acrescidos de aproximadamente 20%.

Forma de área carregada		α
Circular ou quadrada (L/B=1)		~ 2,0
0.00	1,5	~ 2,5
	2	~ 3,0
	3	~ 3,54
Retangular	4	~ 4,0
L.B	5	~ 4,25
16.114	10	~ 5,25
WC	20	~ 5,50
Infinitamente longa	90	~ 6,50

REFERÊNCIAS BIBLIOGRÁFICAS

- 1) ABEF/ABMS (1996) Fundações Teoria e Prática. São Paulo: Pini, 1998. 751 p.
- 2) ALONSO, U. R. Exercícios de fundações. São Paulo: Blucher, 2010.
- 3) ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6122:2010 Projeto e execução de fundações. Rio de Janeiro, 2010.
- 4) REBELO, Y. C. P. Fundações guia prático de projeto, execução e dimensionamento. São Paulo: Zigurate, 2008.
- 5) VELLOSO, D. & LOPES, F. R. Fundações. São Paulo: Oficina de textos, 2010. 568 p.
- 6) CINTRA, J. C. A, AOKI N., ALBIERO, J. H. Fundações diretas: projeto geotécnico. São Paulo: Oficina de textos, 2011.
- 7) Material de aula do professor Marcelo Medeiros UFPR.
- 8) Material de aula do professor Douglas Bittencourt PUC Goias.
- 9) Material de aula do professor Sérgio Paulino Mourthé Faculdades Kennedy.

