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PILARES 

Pilares são elementos estruturais lineares de eixo reto, usualmente dispostos na 
vertical, em que as forças normais de compressão são preponderantes e cuja função 
principal é receber as ações atuantes nos diversos níveis e conduzi-las até as 
fundações. 

Junto com as vigas, os pilares formam os pórticos, que na maior parte dos 
edifícios são os responsáveis por resistir às ações verticais e horizontais e garantir a 
estabilidade global da estrutura. 

As ações verticais são transferidas aos pórticos pelas estruturas dos andares, e 
as ações horizontais decorrentes do vento são levadas aos pórticos pelas paredes 
externas. 

16.1 CARGAS NOS PILARES 

Nas estruturas usuais, compostas por lajes, vigas e pilares, o caminho das 
cargas começa nas lajes, que delas vão para as vigas e, em seguida, para os pilares, 
que as conduzem até a fundação. 

As lajes recebem as cargas permanentes (peso próprio, revestimentos etc.) e as 
variáveis (pessoas, máquinas, equipamentos etc.) e as transmitem para as vigas de 
apoio. 

As vigas, por sua vez, além do peso próprio e das cargas das lajes, recebem 
também cargas de paredes dispostas sobre elas, além de cargas concentradas 
provenientes de outras vigas, levando todas essas cargas para os pilares em que 
estão apoiadas. 

Os pilares são responsáveis por receber as cargas dos andares superiores, 
acumular as reações das vigas em cada andar e conduzir esses esforços até as 
fundações. 

Nos edifícios de vários andares, para cada pilar e no nível de cada andar, obtém-
se o subtotal de carga atuante, desde a cobertura até os andares inferiores. Essas 
cargas, no nível de cada andar, são utilizadas para dimensionamento dos tramos do 
pilar. A carga total é usada no projeto da fundação. 

Nas estruturas constituídas por lajes sem vigas, os esforços são transmitidos 
diretamente das lajes para os pilares. Nessas lajes, deve-se dedicar atenção especial 
à verificação de punção. 

16.2 CARACTERÍSTICAS GEOMÉTRICAS 

No dimensionamento de pilares, a determinação das características geométricas 
está entre as primeiras etapas. 
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16.2.1 Dimensões mínimas 

Com o objetivo de evitar um desempenho inadequado e propiciar boas 
condições de execução, a NBR 6118:2003, no seu item 13.2.3, estabelece que a 
seção transversal dos pilares, qualquer que seja a sua forma, não deve apresentar 
dimensão menor que 19 cm. Em casos especiais, permite-se a consideração de 
dimensões entre 19 cm e 12 cm, desde que no dimensionamento se multipliquem as 
ações por um coeficiente adicional γn, indicado na Tabela 1, onde: 

n 1,95 0,05 bγ = − ⋅  

b é a menor dimensão da seção transversal do pilar (em cm). 
 

Tabela 1. Valores do coeficiente adicional γn em função de b (NBR 6118:2003) 

b (cm) ≥ 19 18 17 16 15 14 13 12 
γn 1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35 

 
Portanto, o coeficiente γn deve majorar os esforços solicitantes finais de cálculo 

nos pilares, quando de seu dimensionamento. 
Todas as recomendações referentes aos pilares são válidas nos casos em que a 

maior dimensão da seção transversal não exceda cinco vezes a menor dimensão 
(h ≤ 5b). Quando esta condição não for satisfeita, o pilar deve ser tratado como pilar-
parede. 

Em qualquer caso, não se permite pilar com seção transversal de área inferior a 
360 cm². 

16.2.2 Comprimento equivalente 

Segundo a NBR 6118:2003, item 15.6, o comprimento equivalente le do pilar, 
suposto vinculado em ambas extremidades, é o menor dos valores (Figura 1): 



 +

≤
l

l
l

h0
e  

lo é a distância entre as faces internas dos elementos estruturais, supostos 
horizontais, que vinculam o pilar;  
h é a altura da seção transversal do pilar, medida no plano da estrutura; 
l é a distância entre os eixos dos elementos estruturais aos quais o pilar está 
vinculado. 
No caso de pilar engastado na base e livre no topo, le = 2l. 



USP – EESC – Departamento de Engenharia de Estruturas Pilares 

 

16.3 

 

 

h l0

h/2

h/2

ll0 + h

 

Figura 1. Distâncias lo  e l 

16.2.3 Raio de giração 

Define-se o raio de giração i como sendo: 

A
Ii =  

I é o momento de inércia da seção transversal; 
A é a área de seção transversal. 
 
Para o caso em que a seção transversal é retangular, resulta: 
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16.2.4 Índice de esbeltez 

O índice de esbeltez é definido pela relação: 

i
el=λ  
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16.3 CLASSIFICAÇÃO DOS PILARES 

16.3.1 Pilares internos, de borda e de canto 

Os pilares podem ser classificados com relação às solicitações iniciais, como é 
mostrado na Figura 2. 

Serão considerados pilares internos aqueles submetidos a compressão simples, 
ou seja, que não apresentam excentricidades iniciais. 

Nos pilares de borda, as solicitações iniciais correspondem a flexão composta 
normal, ou seja, há excentricidade inicial em uma direção. Para seção quadrada ou 
retangular, a excentricidade inicial ocorre na direção perpendicular à borda. 

Pilares de canto são submetidos a flexão oblíqua. As excentricidades iniciais 
ocorrem nas direções das bordas. 

PILAR 
INTERNO

PILAR DE 
BORDA

PILAR DE 
CANTO

 

Figura 2. Classificação quanto às solicitações iniciais 

16.3.2 Classificação quanto à esbeltez 

De acordo com o índice de esbeltez (λ), os pilares podem ser classificados em: 
• pilares robustos ou pouco esbeltos →  λ ≤ λ1 
• pilares de esbeltez média   →   λ1 < λ ≤  90 
• pilares esbeltos ou muito esbeltos  →   90 < λ ≤  140 
• pilares excessivamente esbeltos  →   140 < λ  ≤  200 
 
A NBR 6118:2003 não admite, em nenhum caso, pilares com índice de esbeltez 

λ superior a 200. 
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16.4 EXCENTRICIDADES DE PRIMEIRA ORDEM 

As excentricidades de primeira ordem consideradas no projeto de pilares são 
comentadas a seguir. 

16.4.1 Excentricidade inicial 

Em estruturas de edifícios de vários andares ocorre um monolitismo nas ligações 
entre vigas e pilares que compõem os pórticos de concreto armado. A excentricidade 
inicial, oriunda das ligações dos pilares com as vigas neles interrompidas, ocorre em 
pilares de borda e de canto. A partir das ações atuantes em cada tramo do pilar, as 
excentricidades iniciais no topo e na base são obtidas pelas expressões (Figura 3): 

N
M

e topo
topoi =,       e       

N
M

e base
basei =,  

 

Figura 3. Excentricidades iniciais no topo e na base do pilar (SILVA & PINHEIRO, 2002) 

O cálculo do momento atuante no topo e na base do pilar é realizado segundo 
esquema estático apresentado na Figura 4. 

 

 
Figura 4. Esquema estático 
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Quando não for realizado um cálculo mais rigoroso da influência da 
solidariedade dos pilares com a viga, pode ser considerado, nos apoios extremos, 
momento fletor igual ao momento de engastamento perfeito multiplicado pelos 
coeficientes estabelecidos nas seguintes relações: 

 

• na viga:      
supinfvig

supinf

r3r3r4
r3r3
++

+
 

• no tramo superior do pilar:   
supinfvig

sup

r3r3r4
r3

++
 

• no tramo inferior do pilar:   
supinfvig

inf

r3r3r4
r3

++
 

 
ri é a rigidez do elemento i no nó considerado, avaliada conforme indicado na 
Figura 4, dada por: 

i
i

i

Ir =
l

 

16.4.2 Excentricidade acidental 

Segundo a NBR 6118:2003, na verificação do estado limite último das estruturas 
reticuladas, devem ser consideradas as imperfeições do eixo dos elementos da 
estrutura descarregada. Essas imperfeições podem ser divididas em dois grupos: 
imperfeições globais e imperfeições locais. 

Muitas das imperfeições podem ser cobertas apenas pelos coeficientes de 
ponderação, mas as imperfeições dos eixos das peças não. Elas devem ser 
explicitamente consideradas porque têm efeitos significativos sobre a estabilidade da 
construção. 

a) Imperfeições globais 

Na análise global das estruturas reticuladas, sejam elas contraventadas ou não, 
deve ser considerado um desaprumo dos elementos verticais conforme mostra a 
Figura 5: 

l100
1

1 =θ    
2

11
1

n
a

+
= θθ  

l é a altura total da estrutura (em metros); 
n é o número total de elementos verticais contínuos; 
θ1min = 1/400 para estruturas de nós fixos ou 1/300 para estruturas de nós 
móveis e imperfeições locais. 
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Figura 5. Imperfeições geométricas globais (NBR 6118:2003) 
 

Esse desaprumo não precisa ser superposto ao carregamento de vento. Entre os 
dois, vento e desaprumo, pode ser considerado apenas o mais desfavorável (que 
provoca o maior momento total na base de construção). O valor máximo de θ1 será de 
1/200. 

b) Imperfeições locais 

Na análise local de elementos dessas estruturas reticuladas, devem também ser 
levados em conta efeitos de imperfeições geométricas locais. Para a verificação de um 
lance de pilar deve ser considerado o efeito do desaprumo ou da falta de retilinidade 
do eixo do pilar (Figura 6). 

1

21

3

1/2 1

1 .P ila r de  con traven tam ento
2 .P ila r contraven tado
3 .E lem ento  de  ligação en tre  
os p ila res  1  e  2

a)Fa lta  de  re tilin idade        b )D esaprum o

                      Lance  de p ila r

E lem ento  de  ligação

 

Figura 6. Imperfeições geométricas locais (NBR 6118:2003) 
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Admite-se que, nos casos usuais, a consideração da falta de retilinidade seja 
suficiente. Assim, a excentricidade acidental ea pode ser obtida pela expressão: 

2e 1a
l⋅θ=  

No caso de elementos, usualmente vigas e lajes, que ligam pilares 
contraventados a pilares de contraventamento, deve ser considerada a tração 
decorrente do desaprumo do pilar contraventado (Figura 6). Para pilar em balanço, 
obrigatoriamente deve ser considerado o desaprumo, ou seja: 

l⋅θ= 1ae  

16.4.3 Momento mínimo 

Segundo a NBR 6118:2003, o efeito das imperfeições locais nos pilares pode ser 
substituído em estruturas reticuladas pela consideração do momento mínimo de 1a 
ordem dado por: 

M1d,min = Nd (0,015 + 0,03h) 

h é a altura total da seção transversal na direção considerada (em metros). 
 
Nas estruturas reticuladas usuais admite-se que o efeito das imperfeições locais 

esteja atendido se for respeitado esse valor de momento total mínimo. A este 
momento devem ser acrescidos os momentos de 2a ordem. 

No caso de pilares submetidos à flexão oblíqua composta, esse mínimo deve ser 
respeitado em cada uma das direções principais, separadamente; isto é, o pilar deve 
ser verificado sempre à flexão oblíqua composta onde, em cada verificação, pelo 
menos um dos momentos respeita o valor mínimo indicado. 

16.4.4 Excentricidade de forma 

Em edifícios, as posições das vigas e dos pilares dependem fundamentalmente 
do projeto arquitetônico. Assim, é comum em projetos a coincidência entre faces 
(internas ou externas) das vigas com as faces dos pilares que as apóiam. 

Quando os eixos baricêntricos das vigas não passam pelo centro de gravidade 
da seção transversal do pilar, as reações das vigas apresentam excentricidades que 
são denominadas excentricidades de forma. A Figura 7 apresenta exemplos de 
excentricidades de forma em pilares intermediários, de borda e de canto. 

As excentricidades de forma, em geral, não são consideradas no 
dimensionamento dos pilares, pelas razões apresentadas a seguir. A Figura 8 mostra 
as vigas VT01 e VT04 que se apóiam no pilar P01, com excentricidades de forma efy e 
efx, respectivamente. As tensões causadas pela reação da viga VT01, pelo Princípio 
de Saint-Venant, propagam-se com um ângulo de 45o e logo se uniformizam, 
distribuindo-se por toda a seção transversal do pilar em um plano P. 
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Figura 7. Exemplos de excentricidades de forma em pilares 

A excentricidade de forma provoca, no nível de cada andar, um momento fletor 
MVT01 = RVT01.efy que tende a ser equilibrado por um binário. A Figura 8 também 
representa esquematicamente os eixos dos pilares em vários tramos sucessivos, os 
momentos introduzidos pela excentricidade de forma e os binários que os equilibram. 

Observa-se que, em cada piso, atuam pares de forças em sentidos contrários 
com valores da mesma ordem de grandeza e que, portanto, tendem a se anular. 

A rigor, apenas no nível da fundação e da cobertura as excentricidades de forma 
deveriam ser levadas em conta. Entretanto, mesmo nesses níveis elas costumam ser 
desprezadas. 

No nível da fundação, sendo muito grande o valor da força normal proveniente 
dos andares superiores, o acréscimo de uma pequena excentricidade da reação da 
viga não afeta significativamente os resultados do dimensionamento. 

Já no nível da cobertura, os pilares são pouco solicitados e dispõem de 
armadura mínima, em geral, capaz de absorver os esforços adicionais causados pela 
excentricidade de forma. 
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Figura 8. Excentricidades de forma e binários correspondentes 

16.4.5 Excentricidade suplementar 

A excentricidade suplementar leva em conta o efeito da fluência. A consideração 
da fluência é complexa, pois o tempo de duração de cada ação tem que ser levado em 
conta, ou seja, o histórico de cada ação precisaria ser conhecido. 

O cálculo da excentricidade suplementar é obrigatório em pilares com índice de  
esbeltez λ > 90, de acordo com a NBR 6118:2003. 

O valor dessa excentricidade ec, em que o índice c refere-se a “creep” (fluência, 
em inglês), pode ser obtida de maneira aproximada pela expressão: 














−







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
+= − 12,718e
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M

e Sge
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a
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2
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IE10N
l

⋅⋅
= (força de flambagem de Euler); 
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MSg, NSg são os esforços solicitantes devidos à combinação quase permanente; 
ea é a excentricidade acidental devida a imperfeições locais; 
ϕ é o coeficiente de fluência; 
Eci = 5600 fck

½ (MPa); 
Ic é o momento de inércia no estádio I; 

el  é o comprimento equivalente do pilar. 

16.5 ESBELTEZ LIMITE 

O conceito de esbeltez limite surgiu a partir de análises teóricas de pilares, 
considerando material elástico-linear. Corresponde ao valor da esbeltez a partir do 
qual os efeitos de 2a ordem começam a provocar uma redução da capacidade 
resistente do pilar. 

Em estruturas de nós fixos, dificilmente um pilar de pórtico, não muito esbelto, 
terá seu dimensionamento afetado pelos efeitos de 2a ordem, pois o momento fletor 
total máximo provavelmente será apenas o de 1a ordem, num de seus extremos. 

Diversos fatores influenciam no valor da esbeltez limite. Os preponderantes são: 

• excentricidade relativa de 1a ordem e1/h; 
• vinculação dos extremos do pilar isolado; 
• forma do diagrama de momentos de 1a ordem. 

SOUZA et al. (1994) apresentam um estudo paramétrico de vários casos de 
pilares sujeitos a momentos fletores de 1a e 2a ordem. Os resultados obtidos permitem 
a formulação de um método prático para a determinação da esbeltez limite. 

Segundo a NBR 6118:2003, os esforços locais de 2a ordem em elementos 
isolados podem ser desprezados quando o índice de esbeltez λ for menor que o valor 
limite λ1, que pode ser calculado pelas expressões: 

( )1
1

b

25 12,5 e h+ ⋅
λ =

α
    9035

1 ≤≤ λ
α b

 

sendo e1 a excentricidade de 1a ordem. A NBR 6118:2003 não deixa claro como se 
adota este valor. Na dúvida, pode-se admitir, no cálculo de λ1, e1 igual ao menor valor 
da excentricidade de 1a ordem, no trecho considerado. Para pilares usuais de edifícios, 
vinculados nas duas extremidades, na falta de um critério mais específico, é razoável 
considerar e1 = 0. 

O coeficiente αb deve ser obtido conforme estabelecido a seguir. 
 

a) Pilares biapoiados sem forças transversais 

B
b b

A

M0,60 0,40 0,40                 sendo:   1,0 0,4
M

α = + ≥ ≤ α ≤  
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MA  é o momento fletor de 1a ordem no extremo A do pilar (maior valor absoluto 
ao longo do pilar biapoiado); 

MB  é o momento fletor de 1a ordem no outro extremo B do pilar (toma-se para MB 
o sinal positivo se tracionar a mesma face que MA e negativo em caso 
contrário). 

b) Pilares biapoiados com forças transversais significativas, ao longo da 
altura 

1=αb  

c) Pilares em balanço 

C
b b

A

M0,80 0,20 0,85               sendo:    1,0 0,85
M

α = + ≥ ≤ α ≤  

MA é o momento fletor de 1a ordem no engaste; 
MC é o momento fletor de 1a ordem no meio do pilar em balanço. 

d) Pilares biapoiados ou em balanço com momentos fletores menores que 
o momento mínimo (ver item 3.2.3) 

1=αb  

16.6 EXCENTRICIDADE DE SEGUNDA ORDEM 

A força normal atuante no pilar, sob as excentricidades de 1a ordem 
(excentricidade inicial), provoca deformações que dão origem a uma nova 
excentricidade, denominada excentricidade de 2a ordem. 

A determinação dos efeitos locais de 2a ordem, segundo a NBR 6118:2003, em 
barras submetidas à flexo-compressão normal, pode ser feita pelo método geral ou por 
métodos aproximados. 

A consideração da fluência é obrigatória para índice de esbeltez λ > 90, 
acrescentando-se ao momento de 1a ordem M1d a parcela relativa à excentricidade 
suplementar ec. 

16.7 MÉTODOS DE CÁLCULO 

16.7.1 Conceito do método geral 

O método consiste em estudar o comportamento da barra à medida que se dá o 
aumento do carregamento ou de sua excentricidade. O método geral é aplicável a 
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qualquer tipo de pilar, inclusive nos casos em que as dimensões da peça, a armadura 
ou a força aplicada são variáveis ao longo do seu comprimento. 

O método geral justifica sua utilização pela qualidade dos seus resultados, que 
retratam com maior precisão o comportamento real da estrutura, pois considera a não-
linearidade geométrica, de maneira bastante precisa. 

Considere-se o pilar da Figura 9 engastado na base e livre no topo, sujeito à 
força excêntrica de compressão Nd. 

l

e
Nd

 
Figura 9. Pilar sujeito à compressão excêntrica 

 

Sob a ação do carregamento, o pilar apresenta uma deformação que, por sua 
vez, gera nas seções um momento incremental Nd.y, provocando novas deformações 
e novos momentos. Se as ações externas (Nd e Md) forem menores que a capacidade 
resistente da barra, essa interação continua até que seja atingido um estado de 
equilíbrio para todas as seções da barra. Tem-se, portanto, uma forma fletida estável 
(Figura 10.a). Caso contrário, se as ações externas forem maiores que a capacidade 
resistente da barra, o pilar perde estabilidade (Figura 10.b). A verificação que se deve 
fazer é quanto à existência da forma fletida estável. 

e
Nd

a

a) Equilíbrio estável

y   Î a y   Î ∞

b) Equilíbrio instável

e
Nd

 
Figura 10. Configurações fletidas 
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A estabilidade será atingida quando o pilar parar numa forma deformada estável, 
como mostra a Figura 11, de flecha a, com equilíbrio alcançado entre esforços internos 
e externos, respeitada a compatibilidade entre curvaturas, deformações e posições da 
linha neutra, assim como as equações constitutivas dos materiais e sem haver, na 
seção crítica, deformação convencional de ruptura do concreto ou deformação plástica 
excessiva do aço. 

ea

N d
y

x

0

1

2

n

y 2

y 1

y 0 = a

2 '

1 '

 

Figura 11. Deformada estável 

16.7.2 Pilar padrão 

Como o método geral é extremamente trabalhoso, tendo em vista o número 
muito grande de operações matemáticas, torna-se inviável a utilização deste método 
sem o auxílio do computador. 

A NBR 6118:2003 permite a utilização de alguns métodos simplificados, como o 
do pilar padrão e o do pilar padrão melhorado, cujas aproximações são relativas às 
não-linearidades física e geométrica. 

Por definição, pilar padrão é um pilar em balanço com uma distribuição de 
curvaturas que provoque na sua extremidade livre uma flecha a dada por: 

base

2
e

base

2

r
1

10r
4,0a 






⋅=








⋅=

ll  

Analisando-se a Figura 12 e adotando para a elástica a equação (1): 
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Figura 12. Elástica do pilar padrão 







 π

⋅−= xsenay
l

 (1) 

Assim, tem-se: 







 π

⋅
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⋅−= xcosa'y
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
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
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Como: 

 2

2

dx
yd

r
1

≅  

Para a seção média, tem-se: 

( )
2

2/x
2/x

a''y
r
1







 π

⋅==







=
= l

l

l

 

Assim, a flecha máxima pode ser:  

2/x
2

2

r
1a

l

l

=







⋅

π
=  

Para o caso do pilar em balanço, tem-se: 

base

2
e

r
1

10
a 






⋅=

l  em que  π2 ≅ 10. 
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Obtendo-se a flecha máxima, pode-se obter também o momento total, já que o 
momento de 2a ordem pode ser obtido facilmente pela equação (2). 

aNM base,2 ⋅=  

base

2
e

base,2 r
1

10
NM 






⋅⋅=

l  (2) 

16.7.3 Método da curvatura aproximada 

O método do pilar padrão com curvatura aproximada é permitido para pilares de 
seção constante e de armadura simétrica e constante ao longo de seu eixo e λ ≤ 90. A 
não-linearidade geométrica é considerada de forma aproximada, supondo-se que a 
configuração deformada da barra seja senoidal. A não-linearidade física é levada em 
conta através de uma expressão aproximada da curvatura na seção crítica. A 
excentricidade de 2a ordem e2 é dada por: 

r
e e 1

10

2

2 ⋅=
l  

1/r é a curvatura na seção crítica, que pode ser avaliada pela expressão: 

hhr
005,0

)5,0(
005,01

≤
+

=
ν

 

h é a altura da seção na direção considerada; 
ν = NSd / (Acfcd) é a força normal adimensional. 
 
Assim, o momento total máximo no pilar é dado por: 

A,d1

2
e

dA,d1btot,d M
r
1

10
.NMM ≥








+α=

l  

16.7.4 Método da rigidez κ aproximada 

O método do pilar padrão com rigidez κ aproximada é permitido para λ ≤ 90 nos 
pilares de seção retangular constante, armadura simétrica e constante ao longo do 
comprimento. A não-linearidade geométrica é considerada de forma aproximada, 
supondo-se que a deformada da barra seja senoidal. A não-linearidade física é levada 
em conta através de uma expressão aproximada da rigidez. 
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O momento total máximo no pilar é dado por: 

A,d12
A,d1b

tot,d M

120
1

M
M ≥

νκ
λ

−

α
=  

(3) 

κ é valor da rigidez adimensional, dado aproximadamente por: 

νκ ⋅







+=

d

totd

Nh
M

.
.5132 ,  (4) 

Observa-se que o valor da rigidez adimensional κ é necessário para o cálculo de 
Md,tot, e para o cálculo de κ utiliza-se o valor de Md,tot. Assim, a solução somente pode 
ser obtida por tentativas. Usualmente, poucas iterações são suficientes. 

16.8 CÁLCULO SIMPLIFICADO 

A NBR 6118:2003, item 17.2.5, apresenta processos aproximados para 
dimensionamento à flexão composta normal e à flexão composta oblíqua. 

16.8.1 Flexão composta normal 

O cálculo para o dimensionamento de seções retangulares ou circulares com 
armadura simétrica, sujeitas a flexo-compressão normal, em que a força normal 
reduzida (ν) seja maior ou igual a 0,7, pode ser realizado como um caso de 
compressão centrada equivalente, onde: 







 β+=

h
e1NN Sdeq,Sd  e 0M eq,Sd =  

cdc

Sd

fA
N

=ν    
hN

M
h
e

Sd

Sd=  

( )
h
'd8,001,039,0

1

−α+
=β  

sendo o valor de α dado por: 
α = -1/αS, se αS < 1 em seções retangulares; 
α = αS, se αS ≥ 1 em seções retangulares; 
α = 6, se αS < 6 em seções retangulares; 
α = -4, em seções circulares. 
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Supondo que todas as barras sejam iguais, αS é dado por: 

( )
( )1n

1n

v

h
S −

−
=α  

O arranjo de armadura adotado para detalhamento (Figura 13) deve ser fiel aos 
valores de αS e d’/h pressupostos. 

nv  barras de 
área As

nv 

nh 

MSdh

d'

d'

b

nh  barras de 
área As

 

Figura 13. Arranjo de armadura caracterizado pelo parâmetro αS (Figura 17.2 da NBR 6118:2003) 

16.8.2 Flexão composta oblíqua 

Nas situações de flexão simples ou composta oblíqua, pode ser adotada a 
aproximação dada pela expressão de interação: 

1
M
M

M
M

yy,Rd

y,Rd

xx,Rd

x,Rd =











+












αα

 

MRd,x; MRd,y são as componentes do momento resistente de cálculo em flexão 
oblíqua composta, segundo os dois eixos principais de inércia x e y, da seção 
bruta, com um esforço normal resistente de cálculo NRd igual à normal solicitante 
NSd. Esses são os valores que se deseja obter; 
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MRd,xx; MRd,yy são os momentos resistentes de cálculo segundo cada um dos 
referidos eixos em flexão composta normal, com o mesmo valor de NRd. Esses 
valores são calculados a partir do arranjo e da quantidade de armadura em 
estudo; 
α é um expoente cujo valor depende de vários fatores, entre eles o valor da força 
normal, a forma da seção, o arranjo da armadura e de suas porcentagens. Em 
geral pode ser adotado α = 1, a favor da segurança. No caso de seções 
retangulares, pode-se adotar α = 1,2. 

16.9 DISPOSIÇÕES CONSTRUTIVAS 

Serão considerados o cobrimento das armaduras dos pilares e alguns aspectos 
relativos às armaduras longitudinais e às transversais. 

16.9.1 Cobrimento das armaduras 

O cobrimento das armaduras é considerado no item 7.4.7 da NBR 6118:2003. 
Cobrimento mínimo é o menor valor que deve ser respeitado ao longo de todo o 
elemento considerado. Para garantir o cobrimento mínimo (cmin), o projeto e a 
execução devem considerar o cobrimento nominal (cnom), que é o cobrimento mínimo 
acrescido da tolerância de execução (∆c). Assim, as dimensões das armaduras e os 
espaçadores devem respeitar os cobrimentos nominais, estabelecidos na Tabela 2, 
para ∆c = 10 mm. 

nom minc c c= + ∆  

Tabela 2. Valores de cnom em pilares de concreto armado para ∆c = 10 mm (NBR 6118:2003) 

Classe de agressividade I II III IV 
cnom ( mm) 25 30 40 50 

 
Nas obras correntes, o valor de ∆c deve ser maior ou igual a 10 mm. Quando 

houver um adequado controle de qualidade e rígidos limites de tolerância da 
variabilidade das medidas durante a execução, pode ser adotado o valor ∆c = 5 mm, 
mas a exigência de controle rigoroso deve ser explicitada nos desenhos de projeto. 
Permite-se, então, redução de 5 mm dos cobrimentos nominais prescritos na Tabela 2.  

Os cobrimentos são sempre referidos à superfície da armadura externa, em 
geral à face externa do estribo. O cobrimento nominal deve ser maior que o diâmetro 
da barra. 

A dimensão máxima característica do agregado graúdo utilizado não pode 
superar em 20% o cobrimento nominal, ou seja: 

nomcd ⋅≤ 2,1max  
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16.9.2 Armaduras longitudinais 

A escolha e a disposição das armaduras devem atender não só à função 
estrutural como também às condições de execução, particularmente com relação ao 
lançamento e adensamento do concreto. Os espaços devem permitir a introdução do 
vibrador e impedir a segregação dos agregados e a ocorrência de vazios no interior do 
pilar (item 18.2.1 da NBR 6118:2003). 

As armaduras longitudinais colaboram para resistir à compressão, diminuindo a 
seção do pilar, e também resistem às tensões de tração. Além disso, têm a função de 
diminuir as deformações do pilar, especialmente as decorrentes da retração e da 
fluência. 

O diâmetro das barras longitudinais não deve ser inferior a 10 mm e nem 
superior a 1/8 da menor dimensão da seção transversal (item 18.4.2.1 da 
NBR 6118:2003): 

8
bmm  10 ≤≤ lφ  

16.9.3 Limites da taxa de armadura longitudinal 

Segundo o item 17.3.5.3 da NBR 6118:2003, a armadura longitudinal mínima 
deve ser: 

c
yd

d
min,s A004,0

f
N15,0A ⋅≥⋅=  

O valor máximo da área total de armadura longitudinal é dado por: 

cmax,s A%8A =  

A maior área de armadura longitudinal possível deve ser 8% da seção real, 
considerando-se inclusive a sobreposição de armadura nas regiões de emenda. 

16.9.4 Número mínimo de barras 

A NBR 6118:2003, no item 18.4.2.2, estabelece que as armaduras longitudinais 
devem ser dispostas de forma a garantir a adequada resistência do elemento 
estrutural. Em seções poligonais, deve existir pelo menos uma barra em cada vértice; 
em seções circulares, no mínimo seis barras distribuídas ao longo do perímetro. A 
Figura 14 apresenta o número mínimo de barras para alguns tipos de seção. 
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Figura 14. Número mínimo de barras 

16.9.5 Espaçamento das barras longitudinais 

O espaçamento mínimo livre entre as faces das barras longitudinais, medido no 
plano da seção transversal, fora da região de emendas, deve ser igual ou superior ao 
maior dos seguintes valores (Figura 15): 









⋅
φ≥

  agregado)  do  máximo  (diâmetro d1,2   
                                                       

                                                      mm  20
a

max

l  

Esses valores se aplicam também às regiões de emenda por traspasse. 

a

a a

Ø
l

Sem  em endas 
por traspasse

lb

a Ø
l

Com  em endas 
por traspasse

 

Figura 15. Espaçamento entre as barras da armadura longitudinal 

 

Quando estiver previsto no plano de execução da concretagem o adensamento 
através de abertura lateral na face da fôrma, o espaçamento das armaduras deve ser 
suficiente para permitir a passagem do vibrador. 

O espaçamento máximo sl entre os eixos das barras deve ser menor ou igual a 
duas vezes a menor dimensão da seção no trecho considerado, sem exceder 40 cm, 
ou seja: 
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



≤
cm

b
s

40
2

l  

Para LEONHARDT & MÖNNIG (1978) esse espaçamento máximo não deve ser 
maior do que 30 cm. Entretanto, para pilares com dimensões até 40 cm, basta que 
existam as barras longitudinais nos cantos. 

 

16.9.6 Armaduras transversais 

A armadura transversal de pilares, constituída por estribos e, quando for o caso, 
por grampos suplementares, deve ser colocada em toda a altura do pilar, sendo 
obrigatória sua colocação na região de cruzamento com vigas e lajes (item 18.4.3 da 
NBR 6118:2003). Os estribos devem ser fechados, geralmente em torno das barras de 
canto, ancorados com ganchos que se transpassam, colocados em posições 
alternadas. 

Os estribos têm as seguintes funções: 
a) garantir o posicionamento e impedir a flambagem das barras longitudinais; 
b) garantir a costura das emendas de barras longitudinais; 
c) confinar o concreto e obter uma peça mais resistente ou dúctil. 
 
De acordo com a NBR 6118:2003, o diâmetro dos estribos em pilares não deve 

ser inferior a 5 mm nem a 1/4 do diâmetro da barra isolada ou do diâmetro equivalente 
do feixe que constitui a armadura longitudinal, ou seja: 





≥
4

mm5
t

lφ
φ  

Em pilares com momentos nas extremidades (portanto, nos pilares em geral), e 
nos pré-moldados, LEONHARDT & MÖNNIG (1978) recomendam que se disponham, 
nas suas extremidades, 2 a 3 estribos com espaçamento igual a st/2 e st/4 (Figura 16). 

FUSCO (1995) ainda comenta que, de modo geral, nos edifícios, os estribos não 
são colocados nos trechos de intersecção dos pilares com as vigas que neles se 
apóiam. Isso decorre do fato de a presença de estribos nesses trechos dificultar muito 
a montagem da armadura das vigas. A NBR 6118:2003 deixa claro que é obrigatória a 
colocação de estribos nessas regiões. 
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Figura 16. Estribos adicionais nos extremos e ganchos alternados (LEONHARDT & MÖNNIG, 1978) 

16.9.7 Espaçamento máximo dos estribos 

O espaçamento longitudinal entre estribos, medido na direção do eixo do pilar, 
deve ser igual ou inferior ao menor dos seguintes valores: 











−φ
−φ

≤

          25CA  para   25
          50CA  para   12

seção  da  dimensãomenor  
                                cm  20

st

l

l

 

Permite-se adotar o diâmetro dos estribos 4t lφ<φ , desde que as armaduras 

sejam constituídas do mesmo tipo de aço e o espaçamento respeite também a 
limitação (fyk em MPa): 

2
t

max
yk

1s 90.000
f

 φ
= ⋅ ⋅ φ l

 

16.9.8 Estribos suplementares 

Sempre que houver possibilidade de flambagem das barras da armadura, 
situadas junto à superfície, devem ser tomadas precauções para evitá-la. A NBR 
6118:2003 (item 18.2.4) considera que os estribos poligonais garantem contra 
flambagem as barras longitudinais situadas em seus cantos e as por eles abrangidas, 
situadas no máximo à distância de 20φt do canto, se nesse trecho de comprimento 
20φt não houver mais de duas barras, não contando a do canto (Figura 17). 
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tt t t t t

 

Figura 17. Proteção contra a flambagem das barras longitudinais (LEONHARDT & MÖNNIG, 1981) 

 

Quando houver mais de duas barras no trecho de comprimento 20φt ou barras 
fora dele, deve haver estribos suplementares. Se o estribo suplementar for constituído 
por uma barra reta, terminada em ganchos, ele deve atravessar a seção do pilar e os 
seus ganchos devem envolver a barra longitudinal. Se houver mais de uma barra 
longitudinal a ser protegida junto à extremidade do estribo suplementar, seu gancho 
deve envolver um estribo principal em um ponto junto a uma das barras, o que deve 
ser indicado no projeto de modo bem destacado ( 

Figura 18). Essa amarra garantirá contra a flambagem essa barra encostada e 
mais duas no máximo para cada lado, não distantes dela mais de 20φt. No caso da 
utilização dessas amarras, para que o cobrimento seja respeitado, é necessário prever 
uma distância maior entre a superfície do estribo e a face do pilar. 

(um estribo poligonal e uma barra 
com ganchos)

(dois estribos poligonais) (barra com gancho envolvendo o  
estribo principal) 

 

Figura 18. Estribos suplementares e ganchos 

É oportuno comentar que a presença de estribos suplementares pode dificultar a 
concretagem. Uma alternativa seria concentrar as barras nos cantos, para evitar os 
estribos suplementares.  

A NBR 6118:2003 comenta ainda que, no caso de estribos curvilíneos cuja 
concavidade esteja voltada para o interior do concreto, não há necessidade de 
estribos suplementares. Se as seções das barras longitudinais se situarem em uma 
curva de concavidade voltada para fora do concreto, cada barra longitudinal deve ser 
ancorada pelo gancho de um estribo reto ou pelo canto de um estribo poligonal. 
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16.10 EXEMPLOS DE CÁLCULO 

Será feito o dimensionamento do pilar P5 (Figura 19), utilizando-se o Método da 
Curvatura Aproximada, segundo a NBR 6118:2003. 

16.10.1 Dados 

• Concreto C25, aço CA 50; 
• Cobrimento nominal cnom = 2,5 cm e d’=4,0 cm; 
• Nk = 650 kN; 
• Comprimento do pilar: 290 cm (Figura 20); 
• Seção transversal: 15 cm x 45 cm; 
• Carga total na viga pk = 24 kN/m. 
•  

Como a menor dimensão do pilar é inferior a 19 cm, no dimensionamento deve-
se multiplicar as ações por um coeficiente adicional γn, indicado na Tabela 1, onde b é 
a menor dimensão da seção transversal do pilar. Dessa forma, tem-se: 

( ) ⇒⋅⋅=⋅⋅=⇒== 6502,14,1    15 20,1 knfdn NNcmb γγγ kN 1092N d =  

∴
⋅⋅

=
⋅⋅

=ν

4,1
5,24515

1092
fhb

N

cd

d 0,91ν =  

16.10.2 Comprimento equivalente, raio de giração e índice de esbeltez 

O comprimento equivalente le do pilar deve ser o menor dos seguintes valores: 

⇒


 =+

≤⇒


 +

≤
                   290
 265152500

cm
cmh

ee l
l

l
l cm 265e =l  

Calculando-se o raio de giração e o índice de esbeltez, tem-se: 

∴==
12

15
12
hi cm  4,33i =  

∴==λ
33,4

265
i
el 2,61=λ  

16.10.3 Excentricidade inicial 

Para o cálculo da excentricidade inicial, devem ser definidas algumas grandezas. 
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h = 9 cm

h = 9 cm h = 9 cm

h = 9 cmh = 9 cm

P1 P2 P3

P6P5
(15x45)

P4

P7 P8
(25x45)

P9

P10 P11 P12

V1 (15 x 50)

V2 (15 x 60)

V3 (15 x 60)

V4 (15 x 50)

V5
 (1

5 
x 

50
)

V6
 (1

5 
x 

60
)

V7
 (1

5 
x 

50
)

 

Figura 19. Planta de forma do edifício 

 
V6 (15x40)

V6 (15x40)

P5
(15x45)

P8
(25x45)

V2

V2 V3

V3

 

Figura 20. Vista em corte 
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a) Vão efetivo da viga 

O vão efetivo da viga V6 é calculado conforme a Figura 21. 

210ef aa ++= ll  

⇒






==⋅

==⋅
≤

cmh

cmt
a

 202
40

2
1

 5,72
15

2
1

1
1 cm 5,7a1 =  

⇒






==⋅

==⋅
≤

cmh

cmt
a

 202
40

2
1

 5,222
45

2
1

2
2 cm 20a 2 =  

⇒++=++= 205,75,462210 aaef ll cm 490ef =l  

l0t1 t2

h

 
Figura 21. Vão efetivo da viga 

b) Momentos na ligação viga-pilar 

Para o cálculo dos momentos na ligação viga-pilar, será considerado o esquema 
apresentado na Figura 22. Portanto, para o caso em estudo, tem-se (Figura 23): 

⇒=

⋅

===
5,132
25,12656

2
265
12
1545 3

infsup
e

Irr
l

3
infsup cm 5,95rr ==  

⇒=

⋅

==
490

80000
490
12

4015

l
I

r

3

ef

vig
vig 3,163rvig =  
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Figura 22. Esquema estático para cálculo do momento de ligação viga-pilar 

650 kN 

, 

, 

 

Figura 23. Esquema estático para pilar em estudo 

⇒
⋅

=
⋅

=
12

90,424
12

22lpM eng mkN 48,02M eng ⋅=  

⇒
⋅+⋅+⋅

⋅
⋅=

⋅+⋅+⋅

⋅
⋅=

5,9533,16345,953
5,95302,48

343
3

infsup

sup
sup rrr

r
MM

vig
eng mkN 11,22Msup ⋅=  

⇒
⋅+⋅+⋅

⋅
⋅=

⋅+⋅+⋅
⋅

⋅=
5,9533,16345,953

5,95302,48
343

3

supinf

inf
inf rrr

rMM
vig

eng mkN 11,22Minf ⋅=  

2
infl

2
supl
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 kN.m,MMM vig 442222,1122,11infsup =+=+=  

O momento total no topo e base do pilar em estudo resulta: 

⇒⋅⋅=−= 22,112,14,1MM base ,dtopo ,d cmkN 1885mkN 18,85MM base d,topo d, ⋅=⋅=−=  

c) Excentricidade inicial no topo e na base 

⇒==
1092
1885

Nd

d
i

M
e cm 73,1ei =  

d) Momento mínimo 

( ) ( )1 ,min 0,015 0,03 1, 4 1, 2 650 0,015 0,03 0,15d d
M N h= + ⋅ = ⋅ ⋅ ⋅ + ⋅ ⇒ 1d,minM = 21,29 kN.m  

e) Verificação da dispensa dos efeitos de 2a ordem 

Para pilares biapoiados sem cargas transversais, e sendo os momentos de 
1a ordem nos extremos do pilar m.kN 29,21Mm.kN 85,18MM min,d1BA =<=−= , 

tem-se, segundo o item 15.8.2.d da NBR 61128:2003: 

bα = 1,0  

Considerando-se e1 = 0, resulta: 

⇒=
α

⋅+
=λ

0,1
25he5,1225

b

1
1 25λ 1 =  

1 1
b

35 90 35 90≤ λ ≤ ⇒ ≤ λ ≤ ⇒
α 1λ = 35  

 Como λ = 61,2 > λ1 = 35 ⇒ Devem ser considerados os efeitos de 2a ordem. 

16.10.4 Método da Curvatura Aproximada 

( ) ( )1d,min d
M N 0,015 0,03 h 1, 4 1, 2 650 0,015 0,03 0,15= + ⋅ = ⋅ ⋅ ⋅ + ⋅ ⇒ 1d,minM = 21, 29 kN.m  

( ) ( )1d,A 1d,mínM 18,85 kN.m   M 21,29 kN.m= < = ∴ kN.m 21,29M A1d, =  
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( ) h
005,0

5,0h
005,0

r
1

≤
+ν

= ↔ ( ) ∴=≤=
+

= 033,0
15,0
005,00236,0

5,091,015,0
005,0

r
1 0,0236

r
1

=  

kN.m 39,39=⋅⋅⋅⋅+⋅=⋅⋅+⋅α= 0236,0
10
65,26502,14,129,210,1

r
1

10
NMM

22
e

dA,d1btot,d
l

cm 3,61=
⋅⋅

==
6502,14,1

39,39
N

M
e

d

tot,d
tot  

0,22µ =∴
⋅

=
⋅ν

=µ
15

61,391,0
h
e tot  

Será considerado: 

25,027,0
15
4

h
'd

≅==  

Utilizando-se o ábaco A-5 de Venturini (1987), obtém-se: 

c cd
s

yd

2,515 45
A f 1,40,90 A 27,72 27,72 0,9050f

1,15

⋅ ⋅
⋅

ω = ⇒ = ⋅ω = = ⋅ω = ⋅ ∴ 2
S cm 24,95A =  

Taxa de Armadura: 24,95ρ = = 3,70%
15×45

 

 
Armadura adotada: 12 φ 16 mm (24,0 cm²). Alternativa: 8 φ 20 mm (25,20 cm²) 
 

16.10.5 Estribos 

a) Diâmetro 





 ==φ

≥φ
                   mm 5

mm 44
16

4t
l

 

Adotado φt = 5 mm 
 

b) Espaçamento 








=⋅=φ≥φ

                              cm 20
    cm 2,196,11212

dimensão) (menor  cm 15

t l  

Adotado s = 15 cm 
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Figura 24. Detalhe da seção: 12 φ 16, estribos φ 5 c/ 15 

c) Estribos suplementares 

cm 105,02020 t =⋅=φ  

As quatro barras centrais precisam de estribo suplementar. São adotados os 
estribos múltiplos, indicados na Figura 24. 

16.10.6 Método da Rigidez κ Aproximada 

Utilizando as eq.(3) e (4), item 16.7.4, tem-se: 
 

• 1a Iteração: 

Será adotado para 1a aproximação o momento total obtido pelo método anterior. 

( ) ⇔= m.kN 39,39M
0.1tot,d ( ) ∴








⋅⋅⋅

+=ν
κ

6504,12,115,0
39,395132

1
( ) 70,48ν
κ

1
=  
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( ) m.kN 21,38

48,70120
20,611

29,210,1M 21.1tot,d =

⋅
−

⋅
=  

Para a segunda iteração, pode-se considerar como estimativa razoável a média 
entre os valores anteriores: 

( ) ⇒
+

=
2

21,3839,39M
0.2tot,d ( ) kN.m 38,80M

2.0totd,  =  

• 2a Iteração: 

( ) ⇔= kN.m 38,80M
2.0totd, ( ) ∴








⋅⋅⋅

+=ν
κ

6504,12,115,0
80,385132

1
( ) 69,90ν
κ

2
=  

( ) m.kN 47,38

90,69120
20,611

29,210,1M 21.2tot,d =

⋅
−

⋅
=  

Adotando-se a média dos dois últimos valores, tem-se: 

( ) ⇒
+

=
2

47,3880,38M
0.3tot,d ( ) kN.m 38,64M

3.0totd, =  

∴
⋅⋅

==
6502,14,1

64,38
N

M
e

d

tot,d
tot cm 3,54m 0,0354 etot ==  

∴
⋅

=
⋅ν

=µ
15

54,391,0
h
etot 0,21µ =  

Utilizando-se o ábaco A-5 de Venturini (1987), obtém-se: 

∴⋅=⋅
⋅⋅

=ω⋅
⋅

=⇒=ω 88,072,2786,0

15,1
50

4,1
5,24515

f
fA

A88,0
yd

cdc
s

2
s cm 24,39A =  

Taxa de Armadura: 3,61%
4515

24,39ρ =
×

=  (2% menor que o anterior) 
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16.11 CONCLUSÕES 

Neste item serão apresentados alguns aspectos que foram observados durante 
a evolução do trabalho, no que diz respeito aos métodos apresentados pela 
NBR 6118:2003 para dimensionamento de pilares. 

Inicialmente, é importante salientar que a excentricidade de 1a ordem e1 não 
inclui a excentricidade acidental ea, apenas a excentricidade inicial ei, sendo que a 
excentricidade acidental não interfere no resultado quando M1d,A > M1d, Min, pois este 
último leva em conta uma excentricidade acidental mínima. 

No cálculo de λ1, a NBR 6118 não deixa claro qual a seção em que se deve 
considerar a excentricidade de primeira ordem e1. Para pilares usuais de edifícios, 
ainda se pode imaginar que e1 deva ser considerado no centro do pilar. No entanto, 
para pilares em balanço, existe a dúvida de onde considerar a excentricidade, se no 
meio do pilar ou no engaste. 

Para se determinar a influência da solidariedade dos pilares com a viga, no 
cálculo do momento atuante no pilar, deve-se considerar o esquema estático da Figura 
17. No entanto, os coeficientes da NBR 6118:2003 não estão em acordo com esse 
esquema, conforme pode ser constatado no item 14.6.7.1 dessa Norma. 
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