

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis 23 de junho de 2020

Green aviation fuel: the future biofuel flagship Querosene de aviação como "carro-chefe" dos biocombustíveis do future

Ricardo Reis Soares

Chemistry Institute¹ and Faculty of Chemical Engineering² Federal University of Uberlandia/Brazil

(*): rrsoares@ufu.br

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis 23 de junho de 2020

Introduction / Motivation

BioQAv production processes

- Towards new (oleochemistry)-based Biorefinery (Hydrolysis of Tryglicerides with Aqueous Phase Reforming)
- Biomass Gasification and Fischer-Tropsch Synthesis

Figure : Brazil Energy Supply – 2019 (EPE)

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis

23 de junho de 2020

5

Composição Setorial do Consumo de Derivados de Petróleo (Oil Products Consumption by Sector)

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis

Figure 2: Brazil's petroleum-derived consumption evolution, 1970-2014. Source: EPE (2015).

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis 23 de junho de 2020

Solution without CO₂ emission ?

✓ Electric vehicles

Mercado de carros elétricos no Brasil será de 180 mil unidades/ano em 2030 – EPE (JAC iEV40 – China – R\$ 67.000,0)

Future of Ethanol and Biodiesel Market ??

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis

23 de junho de 2020

> FLIGHTPATH TO AVIATION GREEN "FUEL" NOT INCLUDE ELECTRICITY !

- In the case of Jet Fuel, there is not still an equivalent "green" molecule, such as FAME, that can substitute or blend with traditional Kerosene.
- Airlines companies has set a target (2030) to replace part of the fossil Jet Fuel by renewable one. By 2050: 50%

Then, there is a growing interest in the development of processes for the conversion of fats and oils, AND MAINLY LIGNOCELLULOSIC BIOMASS, into hydrocarbon fuels that can serve as drop-in replacements for petroleum-derived fuels

Therefore, biojet fuel will push biofuel production in the future

Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis

23 de junho de 2020

Why biojet fuels (BioQAv) ?

Aviation sector: 2% of global CO₂ emissions, with growth trend

ICAO's COP	RSIA mechanism					
Until 2020	Increasing the energy efficiency of the fleet in 1.5% per year 📀					
After 2020	Stabilizing emissions through carbon neutral growth 👔					
In 2050	Cutting emissions in half in comparison to 2005 levels 🥂					

CORSIA: Carbon Offset and Reduction Scheme for International Aviation, ICAO: International Civil Aviation Organization

kerosene...

BioQAv Production processes Programa de Pós-Graduação em Biocombustíveis Seminários em Biocombustíveis 23 de junho de 2020

ROTAS PARA PRODUÇÃO DE BIOQAV

De álcool à BioQAv
De açúcares a BioQAv
De gás à BioQAv
De óleo vegetal à BioQAv

Possíveis caminhos para conversão de biomassa à combustível de aviação (WHY, et al., 2019)

Rotas de produção de combustível de aviação aprovadas pela ASTM (CARVALHO, et al., 2019).

Rota de conversão	Abroviação	Conteúdo máximo de	Ano de aprovação pela	
	Abreviação	biocombustível	ASTM	
Gaseificação e síntese de Fischer-Tropsch	FT	50%	2009	
Hidroprocessamento de óleos vegetais	HEFA	50%	2011	
Iso-parafias sintéticas	SIP	10%	2014	
Kerosene parafínico sintetizado com aromáticos	SPK/A	50%	2015	
Álcool para combustível de aviação	ATJ	50%	2018	

Álcoois a BioQAv (WANG, et al., 2016)

Óleos Vegetais a BioQAv – HEFA (WHY, et al., 2019; WANG, et al., 2017)

Óleos Vegetais a BioQAv – HEFA (WHY, et al., 2019; WANG, et al., 2017)

Isomerização:

$$n-C_nH_{2n+2} \rightarrow iso-C_nH_{2n+2}$$

Hidrocraqueamento:

 $iso-C_nH_{2n+2} + H_2 \Leftrightarrow iso-C_mH_{2m+2} + n-C_mH_{2m+2} + n-C_{n-m}H_{2(n-m)+2}$

Aromatização:

$$C_n H_{2n} \rightarrow C_n H_n + (\frac{n}{2}) H_2$$

Óleos Vegetais a BioQAv – HEFA (WHY, et al., 2019; WANG, et al., 2017)

Principais óleos Vegetais a BioQAv (WHY, et al., 2019)

Materia Prima	Rota de	Condições de reação	Catalisador	Rendimento de
	desoxigenação			BioQAv (%)
Óleo de soja	Descarbonilação	T = 390 °C; P = 1 Mpa (H ₂); τ = 8 h	Ni-MO/HY	48,2
	Hidrodesoxigenação	T = 370 – 385 °C; P = 3 Mpa (H ₂);	Pt/Al ₂ O ₃ /Sapo-11	42 - 48
		LHSV = 1 h^{-1} ; H_2/δ leo = 800NL/L		
Resto de óleo de cozinha	Descarbonilação	T = 400 °C; P = 3 Mpa (H ₂); τ = 8,0 h	Ni/Meso-Y	40,5
	Hidrodesoxigenação	T = 300 °C; P = 3 Mpa (H ₂); τ = 7,5 h	Ni-Mo/ γ -Al ₂ O ₃	97
	Hidrodesoxigenação	T = 300 °C; P = 1 Mpa (H ₂); GHSV = 2,33	Ni ₂ P/AC	77,4 (biodiesel)
		min ⁻¹		
Óleo de mamona	Hidrodesoxigenação	T = 300 – 360 °C; P = 3 Mpa (H ₂);	NiAg/SAPO-11;	91,6; 80,3
		WHSV = $2 h^{-1}$	Ni/USY-APTES-MCM-41	
Óleo de alga	Descarboxilação	T = 360 °C; Solvente = água;	Pt/C	90
		WHSV = 2 h ⁻¹ ; τ = 45,0 min		
Óleo de Macaúba	Descarboxilação	T = 300 °C; P = 1 MPa (H ₂); τ = 5,0 h	Pd/C	85
Óleo de Palma	Hidrodesoxigenação	T = 300 °C; P = 1 MPa (H ₂); τ = 5,0 h	Pd/C	82
	Hidrodesoxigenação	T = 330 °C; P = 5 MPa (H ₂); τ = 5,0 h	Ni-MoS ₂ / γ -Al ₂ O ₃	58
		NUMBER OF 1 Hz COC NCm ³		
		WHSV = 2 h ⁻¹ ; $\frac{2}{6 \log 2} = 800 \frac{1}{cm^3}$		
Óleo de Jatrofa	Hidrodesoxigenação	T = 420 °C; P = 6 – 9 MPa (H ₂); τ = 5,0 h	Ni-W/SiO ₂ -Al ₂ O ₃	30
		LHSV = 0.5 - 2 h ⁻¹ ; $\frac{H_2}{H_2}$ = 1500NL/L		

CatBior V, 2019 September 23-27, 2019 Turku / Åbo Finland

Towards new (oleochemistry)-based Biorefinery

Biomassa à BioQAv = Gaseificação + SFT BIOVALUE E META ESPECÍFICA: Estudar Sistema Integrado (FT + SIP + SPK/A) para produção de BioQAv (BTL)

□ Síntese de Fischer-Tropsch (FT)

□ Síntese de Iso-Parafinas (SIP)

□ Síntese de Querosenes Parafínicos c/ Aromáticos (SPK/A)

Whole chain decentralized biomass valorization to advanced biofuels: development and assessment of thermochemical routes integrated to biomass production and biochemical routes Brazil – EC coordinated call on Advanced Lignocellulosic Biofuels HORIZON 2020 (H2020) Work Programme 2016-2017 - 'Secure, Clean and Efficient Energy'

> LCE-22-2016: International Cooperation with Brazil on Advanced Lignocellulosic Biofuels - BECOOL

European Commission (EC) and MCTIC/CONFAP/FAPESP

GENERAL

GOALS

Estudo do Processo de Fischer-Tropsch Integrado

• Co

Estudo do Processo de Fischer-Tropsch Integrado

Estudo do Processo de Fischer-Tropsch Integrado

Agradecimentos: ao Engo. Délio Barroso de Souza pela elaboração de vários slides

OBJETIVOS

- ESTUDAR TERMODINÂMICA DOS PROCESSOS E SINTETIZAR CATALISADORES VISANDO OTIMIZAR CONDIÇÕES REACIONAIS IGUAIS (T E P) PARA OPERAÇÃO EM SÉRIE.
- > OTIMIZAR QAv
- > LEVANTAR CINÉTICA DA SFT

INTEGRAR OS PROCESSOS DE HIDROPROCESSAMENT O E FISCHER-TROPSCH NUM SÓ.